Electromagnetic field enhancement in optical antenna arrays is studied by simulation and experiment at midinfrared wavelengths. The optical antennas are designed to produce intense optical fields confined to subwavelength spatial dimensions when illuminated at the resonant wavelength. Finite difference time domain (FDTD) method simulations are made of the current, charge, and field distributions in the antennas. The influence of antenna shape, length, and sharpness upon the intensity of the optical fields produced is found. Optical antennas arrays are fabricated on transparent substrates by electron beam lithography. Far-field extinction spectroscopy carried out on the antenna arrays shows the dependence of the resonant wavelength on the antenna length and material. The FDTD calculated and experimentally measured extinction efficiencies of the optical antennas are found to be in good agreement.

1.
N.
Felidj
,
J.
Aubard
,
G.
Levi
,
J. R.
Krenn
,
M.
Salerno
,
G.
Schider
,
B.
Lamprecht
,
A.
Leitner
, and
F. R.
Aussenegg
,
Phys. Rev. B
65
,
075
419
(
2002
).
2.
K.
Kneipp
,
H.
Kneipp
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
J. Phys.: Condens. Matter
14
,
R597
(
2002
).
3.
S. A.
Maier
,
P. G.
Kik
, and
H. A.
Atwater
,
Appl. Phys. Lett.
81
,
1714
(
2002
).
4.
T. Matsumoto, Y. Anzai, and T. Shimano, International Symposium on Optical Memory 2001, Toyama, Japan, November 2001.
5.
J. T.
Krug
,
E. J.
Sanchez
, and
X. S.
Xie
,
J. Chem. Phys.
116
,
10
895
(
2002
).
6.
J. P.
Kottmann
,
O. J. F.
Martin
,
D. R.
Smith
, and
S.
Schultz
,
J. Microsc.
202
,
60
(
2001
).
7.
I.
Puscasu
,
D.
Spencer
, and
G. D.
Boreman
,
Appl. Opt.
39
,
1570
(
2000
).
8.
T.
Schimert
,
M. E.
Koch
, and
C. H.
Chan
,
J. Opt. Soc. Am. A
7
,
1539
(
1990
).
9.
R.
Ulrich
,
Infrared Phys.
7
,
37
(
1967
).
10.
C. L.
Haynes
and
R. P.
Van Duyne
,
J. Phys. Chem. B
105
,
5599
(
2001
).
11.
V.
Daneu
,
D.
Sokoloff
,
A.
Sanchez
, and
A.
Javan
,
Appl. Phys. Lett.
15
,
398
(
1969
).
12.
S.
Wang
,
Appl. Phys. Lett.
28
,
303
(
1976
).
13.
A.
Sanchez
,
C. F.
Davis
,
K. C.
Liu
, and
A.
Javan
,
J. Appl. Phys.
49
,
5270
(
1978
).
14.
F.
Zenhausern
,
Y.
Martin
, and
H. K.
Wickramasinghe
,
Science
269
,
1083
(
1995
).
15.
Y. C.
Martin
,
H. F.
Hamann
, and
H. K.
Wickramasinghe
,
J. Appl. Phys.
89
,
5774
(
2001
).
16.
L.
Novotny
,
R. X.
Bian
, and
X. S.
Xie
,
Phys. Rev. Lett.
79
,
645
(
1997
).
17.
E. J.
Sanchez
,
L.
Novotny
, and
X. S.
Xie
,
Phys. Rev. Lett.
82
,
4014
(
1999
).
18.
R.
Hillenbrand
,
T.
Taubner
, and
F.
Keilmann
,
Nature (London)
418
,
159
(
2002
).
19.
A.
Chimmalgi
,
T. Y.
Choi
,
C. P.
Grigoropoulos
, and
K.
Komvopoulos
,
Appl. Phys. Lett.
82
,
1146
(
2003
).
20.
TEMPEST 6.0, Electronics Research Laboratory, University of California at Berkeley, Berkeley, California.
21.
Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Orlando, Florida, 1985).
22.
Frequency Selective Surface and Grid Array, edited by T. K. Wu (Wiley, New York, 1995).
23.
W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, New York, 1981).
24.
FTIR is Bruker IFS 66v/s. Infrared microscope is Bruker IRScope II.
25.
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
26.
A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991)
27.
S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994), pp. 245–247.
28.
T. A.
Cwik
and
R.
Mittra
,
IEEE Trans. Antennas Propag.
AP-35
,
1226
(
1987
).
29.
C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).
This content is only available via PDF.
You do not currently have access to this content.