A semiclassical two-dimensional ensemble Monte Carlo simulator is used to perform a physical microscopic analysis of the kink effect in short-channel InAlAs/InGaAs lattice-matched high electron mobility transistors (HEMTs). Due to the small band gap of InGaAs, these devices are very susceptible to suffer impact ionization processes, with the subsequent hole transport in the channel, both supposedly implicated in the kink effect and easy to be implemented in a Monte Carlo simulation. The results indicate that for high enough VDS, holes, generated by impact ionization, tend to pile up in the channel under the source side of the gate due to the attracting potential caused by the surface charge at the recess and, mostly, by the gate potential. Due to this pile up of positive charge, the potential barrier controlling the current through the channel is lowered, so that the channel is further opened and ID increases, leading to the well known kink effect in the current–voltage characteristics. The microscopic understanding of this phenomenon provides valuable information to conceive the optimum fabrication process for kink-effect-free HEMTs.

1.
S. Tiwari, Compound Semiconductor Device Physics (Academic, New York, 1992).
2.
S.
Weinreb
,
T.
Gaier
,
R.
Lai
,
M.
Barsky
,
Y. C.
Leong
, and
L.
Samoska
,
IEEE Microw. Guid. Wave Lett.
9
,
282
(
1999
).
3.
J. W.
Archer
,
R.
Lai
,
R.
Grundbacher
,
M.
Barsky
,
R.
Tsai
, and
P.
Reid
,
IEEE Microw. Wire. Compon. Lett.
11
,
4
(
2001
).
4.
M. H.
Somerville
,
A.
Ernst
, and
J. A.
del Alamo
,
IEEE Trans. Electron Devices
47
,
922
(
2000
).
5.
W.
Kruppa
and
J. B.
Boos
,
IEEE Trans. Electron Devices
42
,
1717
(
1995
).
6.
R. T.
Webster
,
S.
Wu
, and
A. F. M.
Anwar
,
IEEE Electron Device Lett.
21
,
193
(
2000
).
7.
G.
Meneghesso
,
G.
Massari
,
D.
Buttari
,
A.
Bortoletto
,
M.
Maretto
, and
E.
Zanoni
,
Microelectron. Reliab.
39
,
1759
(
1999
).
8.
T.
Suemitsu
,
T.
Enoki
,
N.
Sano
,
M.
Tomizawa
, and
Y.
Ishii
,
IEEE Trans. Electron Devices
45
,
2390
(
1998
).
9.
A.
Di Carlo
,
L.
Rossi
,
P.
Lugli
,
G.
Zandler
,
G.
Meneghesso
,
M.
Jackson
, and
E.
Zanoni
,
IEEE Electron Device Lett.
21
,
149
(
2000
).
10.
A.
Sleimann
,
A.
Di Carlo
,
P.
Lugli
, and
G.
Zandler
,
IEEE Trans. Electron Devices
48
,
2188
(
2001
).
11.
J.
Mateos
,
T.
González
,
D.
Pardo
,
V.
Hoël
, and
A.
Cappy
,
Semicond. Sci. Technol.
14
,
864
(
1999
).
12.
J.
Mateos
,
T.
González
,
D.
Pardo
,
V.
Hoël
,
H.
Happy
, and
A.
Cappy
,
IEEE Trans. Electron Devices
47
,
250
(
2000
).
13.
J.
Mateos
,
T.
González
,
D.
Pardo
,
V.
Hoël
, and
A.
Cappy
,
IEEE Trans. Electron Devices
47
,
1950
(
2000
).
14.
S.
Babiker
,
A.
Asenov
,
N.
Cameron
, and
S. P.
Beaumont
,
IEEE Trans. Electron Devices
43
,
2032
(
1996
).
15.
M. V.
Fischetti
,
IEEE Trans. Electron Devices
38
,
634
(
1991
).
16.
T. P.
Pearsal
,
Appl. Phys. Lett.
36
,
218
(
1980
).
17.
F.
Osaka
,
T.
Mikawa
, and
T.
Kaneda
,
IEEE J. Quantum Electron.
21
,
1326
(
1985
).
18.
T.
Kagawa
,
Y.
Kawamura
,
H.
Asai
,
M.
Naganuma
, and
O.
Mikami
,
Appl. Phys. Lett.
55
,
993
(
1989
).
19.
I.
Watanable
,
T.
Torikai
,
K.
Matika
,
K.
Fukushima
, and
T.
Uji
,
IEEE Electron Device Lett.
11
,
437
(
1990
).
20.
T.
Brudevoll
,
T. A.
Fjeldly
,
J.
Baek
, and
M. S.
Shur
,
J. Appl. Phys.
67
,
7373
(
1990
).
21.
M.
Costato
and
L.
Reggiani
,
Phys. Status Solidi B
58
,
471
(
1973
).
22.
K.
Brennan
and
K.
Hess
,
Solid-State Electron.
27
,
347
(
1984
).
23.
B. Jalali and S. J. Pearton, InP HBTs: Growth, Processing, and Applications (Artech House, Boston, 1995).
24.
W. Liu, Fundamentals of III-IV Devices (HBTs, MESFETs, and HFETs/HEMTs (Wiley, New York, 1999).
This content is only available via PDF.
You do not currently have access to this content.