The laser-based reverberant technique is used to measure ultrasonic absorption spectra in the 2 to 45 MHz frequency range. This technique, being contactless, allows measurements at high temperature. The absorption spectra of ultra-low carbon steel samples are studied at room temperature in a magnetic field (in order to suppress the magnetoelastic contribution) and in a high temperature furnace (20–1200 °C) without magnetic field. Small steel samples (about 10×10×1 mm3) are used. At room temperature, two main contributions to the ultrasonic absorption are identified: microeddy currents (magnetoelastic contribution) and absorption caused by dislocations (deformation contribution). A typical microeddy current peak is observed and yields a reasonable estimate of the magnetic domain size. Above 10 MHz, the nonmagnetic contribution to the total absorption follows the classical vibrating string model. However, other phenomena also contribute to the absorption spectra. Below 10 MHz, an amplitude-independent damping background is observed. In addition, a small frequency-independent contribution to the absorption is observed at room temperature and is attributed to a thin surface layer. The absorption at high temperature is dominated below the Curie point by the magnetoelastic contribution. Two internal friction peaks are also detected. The first one, at 100 °C, is related to the dislocation kink motion. The second one, measured at 330 °C and 10 MHz, is attributed to the Snoek relaxation of carbon and/or nitrogen in α-iron. The Curie transition as well as the ferrite-austenite transition strongly affect the internal friction spectra.

1.
R. L. Weaver, in Nondestructive Characterization of Materials, Vol. 2, edited by J. F. Bussière, J.-P. Monchalin, R. E. Ruud, and R. E. Green, Jr. (Plenum Press, New York, 1987), p. 689.
2.
H. Willems, in Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Vol. 6A, edited by D. O. Thompson and D. E. Chimenti (Plenum Press, New York, 1987), p. 473.
3.
A. B. Bhatia, Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids (Clarendon Press, Oxford, 1967).
4.
A. I. Beltzer, Acoustics of Solids (Springer-Verlag, Berlin, 1988).
5.
R. L.
Weaver
,
J. Acoust. Soc. Am.
71
,
1608
(
1982
).
6.
A.
Moreau
,
M.
Lord
,
D.
Lévesque
,
M.
Dubois
, and
J. F.
Bussière
,
J. Alloys Compd.
310
,
427
(
2000
).
7.
M.
Paul
,
B.
Haberer
, and
W.
Arnold
,
Mater. Sci. Eng., A
168
,
87
(
1993
).
8.
B.
Haberer
,
M.
Paul
,
H.
Willems
, and
W.
Arnold
,
J. Alloys Compd.
211/212
,
636
(
1994
).
9.
J.-P.
Monchalin
,
J.-D.
Aussel
,
R.
Héon
,
C. K.
Jen
,
A.
Boudreault
, and
R.
Bernier
,
J. Nondestruct. Eval.
8
,
121
(
1989
).
10.
A.
Cand
,
J. P.
Monchalin
, and
X.
Jia
,
Appl. Phys. Lett.
64
,
414
(
1994
).
11.
J.-P. Monchalin, in Progress Towards the Application of Laser-Ultrasonics in Industry (Plenum Press, La Jolla, CA, 1992).
12.
M.
Dubois
,
M.
Militzer
,
A.
Moreau
, and
J. F.
Bussière
,
Scr. Mater.
42
,
867
(
2000
).
13.
A.
Moreau
,
D.
Lévesque
,
M.
Lord
,
M.
Dubois
,
J.-P.
Monchalin
,
C.
Padioleau
, and
J. F.
Bussière
,
Ultrasonics
40
,
1047
(
2002
).
14.
M.
Dubois
,
A.
Moreau
,
M.
Militzer
, and
J. F.
Bussière
,
Scr. Mater.
39
,
735
(
1998
).
15.
M.
Dubois
,
A.
Moreau
, and
J. F.
Bussière
,
J. Appl. Phys.
89
,
6487
(
2001
).
16.
J.-P.
Monchalin
,
R.
Héon
,
P.
Bouchard
, and
C.
Padioleau
,
Appl. Phys. Lett.
55
,
1612
(
1989
).
17.
A. Moreau and M. Lord, in Nondestructive Characterization of Materials, Vol. VIII, edited by R. E. Green, Jr. (Plenum Press, New York, 1998), p. 27.
18.
A.
Moreau
,
J. Acoust. Soc. Am.
98
,
2745
(
1995
).
19.
A. Dawson and A. Moreau, Absolute Study of Acoustic Second Harmonic Generation in Zr-Nb Pressure Tubes, Technical Report No. CNRC 39627 (1995).
20.
R. M. Bozorth, Ferromagnetism (D. Van Nostrand Company, New York, 1951).
21.
W. J.
Bratina
,
U. M.
Martius
, and
D.
Mills
,
J. Appl. Phys.
31
,
241S
(
1960
).
22.
Original sample material and related information provided by J. Toth, LTV Steel Company.
23.
P. Langlois and J. F. Bussière, in Nondestructive Characterization of Materials, Vol. 2, edited by J. F. Bussière, J.-P. Monchalin, R. E. Ruud, and R. E. Green, Jr. (Plenum Press, New York, 1987), p. 291.
24.
J. Degauque, in Mechanical SpectroscopyQ−12001 with Applications to Materials Science, edited by R. Schaller, G. Fantozzi, and G. Gremaud (Trans Tech Publications, Uetikon-Zuerich, Switzerland, 2001), p. 453.
25.
W. J. Bratina, in Physical Acoustics, Vol. 3, Part A, edited by W. P. Mason (Academic Press, New York, 1966), p. 223.
26.
A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids, 1st Ed. (Academic Press, New York, 1972).
27.
W. P.
Mason
,
Phys. Rev.
83
,
683
(
1951
).
28.
Here saturation refers to a magnetic hysteresis loop measurement.
29.
D.
Bloor
and
D. H.
Martin
,
Proc. Phys. Soc. Jpn.
73
,
694
(
1959
).
30.
F.
Dabosi
,
Mem. Sci. Rev. Metall.
65
,
141
(
1968
).
31.
S. Chikazumi, Physics of Magnetism (Wiley, New York, 1964).
32.
A.
Granato
and
K.
Lücke
,
J. Appl. Phys.
27
,
583
(
1956
).
33.
J. S. Koehler, in Imperfections in Nearly Perfect Crystals, in Proceedings of a Symposium, Pocono Manor, 12–13 October 1950, edited by W. Shockley, J. H. Hollomon, R. Maurer, and F. Seitz (Wiley & Sons, New York, 1952), pp. 197–216.
34.
A. D. Brailsford, in Some Aspects of Dislocation-Point Defect Interactions and their Significance to Internal Friction, Gainsville, 1980 (Pergamon, New York), p. 430.
35.
G. A.
Alers
and
D. O.
Thompson
,
J. Appl. Phys.
32
,
283
(
1961
).
36.
H.
Schmidt
,
D.
Lenz
, and
K.
Lücke
,
J. Phys. Colloq.
42
,
351
(
1981
).
37.
G. Gremaud, in Mechanical SpectroscopyQ−12001 with Applications to Materials Science, edited by R. Schaller, G. Fantozzi, and G. Gremaud (Trans Tech Publications, Uetikon-Zuerich, Switzerland, 2001), p. 178.
38.
Laser-ultrasonics measures surface displacement amplitude. Typically, it is approximately 10 nm shortly after generation, and decays to the measurement noise level at around 0.1 nm. Strain is equal to the gradient of surface displacement. But the measurement is made at a single point location and therefore, strain cannot be estimated.
39.
J.
Baur
and
W.
Benoit
,
J. Appl. Phys.
60
,
3473
(
1986
).
40.
J.
Baur
and
W.
Benoit
,
J. Appl. Phys.
61
,
2463
(
1987
).
41.
C.
Bonjour
and
W.
Benoit
,
Acta Metall.
27
,
1755
(
1979
).
42.
P.
Feltham
,
J. Phys. Colloq.
42
,
1073
(
1981
).
43.
G.
Gremaud
,
J. Phys. Colloq.
48
,
15
(
1987
).
44.
G.
D’Anna
,
W.
Benoit
, and
V. M.
Vinokur
,
J. Appl. Phys.
82
,
5983
(
1997
).
45.
W. Benoit, in Mechanical SpectroscopyQ−12001 with Applications to Materials Science, edited by R. Schaller, G. Fantozzi, and G. Gremaud (Trans Tech Publications, Uetikon-Zuerich, Switzerland, 2001), p. 141.
46.
A. E.
Lord
and
D. N.
Beshers
,
Acta Metall.
14
,
1659
(
1966
).
47.
M.
Weller
,
J. Phys. IV
6
,
63
(
1996
).
48.
J. D.
Fast
and
M. B.
Verrijp
,
Philips Res. Rep.
16
,
51
(
1961
).
49.
F.
Walz
,
M.
Weller
, and
M.
Hirscher
,
Phys. Status Solidi A
154
,
765
(
1996
).
50.
M. Weller, in Mechanical SpectroscopyQ−12001 with Applications to Materials Science, edited by R. Schaller, G. Fantozzi, and G. Gremaud (Trans Tech Publications, Uetikon-Zuerich, Switzerland, 2001), p. 95.
51.
W. C. Leslie, The Physical Metallurgy of Steels (Hemisphere Pub. Corp., Washington, 1981).
52.
G.
Fantozzi
and
I. G.
Ritchie
,
J. Phys. Colloq.
42
,
3
(
1981
).
53.
H.
Schultz
,
Mater. Sci. Eng., A
141
,
149
(
1991
).
54.
H.
Mizubayashi
,
H.
Kronmüller
, and
A.
Seeger
,
J. Phys. Colloq.
46
,
309
(
1985
).
55.
G.
Gremaud
,
J. Phys. Colloq.
42
,
1141
(
1981
).
56.
G.
Gremaud
and
W.
Benoit
,
J. Phys. Colloq.
42
,
163
(
1981
).
57.
G.
Gremaud
and
W.
Benoit
,
J. Phys. Colloq.
42
,
369
(
1981
).
58.
E. M.
Terry
,
Phys. Rev.
30
,
133
(
1910
).
59.
K.
Honda
and
S.
Shimizu
,
Philos. Mag.
6
,
392
(
1903
).
60.
O.
Engler
,
Ann. Phys. (Leipzig)
31
,
145
(
1938
).
This content is only available via PDF.
You do not currently have access to this content.