An easy and reliable method to extract the crystalline fractions in microcrystalline films is proposed. The method is shown to overcome, in a natural way, the inconsistencies that arise from the regular peak fitting routines. We subtract a scaled Raman spectrum that was obtained from an amorphous silicon film from the Raman spectrum of the microcrystalline silicon film. This subtraction leaves us with the Raman spectrum of the crystalline part of the microcrystalline film and the crystalline fraction can be determined. We apply this method to a series of samples covering the transition regime from amorphous to microcrystalline silicon. The crystalline fractions show good agreement with x-ray diffraction (XRD) results, in contrast to crystalline fractions obtained by the fitting of Gaussian line profiles applied to the same Raman spectra. The spectral line shape of the crystalline contribution to the Raman spectrum shows a clear asymmetry, an observation in agreement with model calculations reported previously. The varying width of this asymmetrical peak is shown to correlate with the mean crystallite size as determined from XRD spectra.

1.
R. E. I. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells (Kluwer, Dordrecht, 1998).
2.
L.
Houben
,
M.
Luysberg
,
P.
Hapke
,
R.
Carius
,
F.
Finger
, and
H.
Wagner
,
Philos. Mag. A
77
,
1447
(
1998
).
3.
D. L.
Williamson
,
Mater. Res. Soc. Symp. Proc.
557
,
251
(
1999
).
4.
P. Roca i
Cabarrocas
and
S.
Hamma
,
Thin Solid Films
337
,
23
(
1999
).
5.
H.
Richter
,
Z. P.
Wang
, and
L.
Ley
,
Solid State Commun.
39
,
625
(
1981
).
6.
R.
Rizzoli
,
C.
Summonte
,
J.
Plá
,
E.
Centurioni
,
G.
Ruani
,
A.
Desalvo
, and
F.
Zignani
,
Thin Solid Films
383
,
7
(
2001
).
7.
Z.
Iqbal
,
S.
Vepřek
,
A. P.
Webb
, and
P.
Capezzuto
,
Solid State Commun.
37
,
993
(
1981
).
8.
I. H.
Campbell
and
P. M.
Fauchet
,
Solid State Commun.
58
,
739
(
1986
).
9.
H.
Touir
,
J.
Dixmier
,
K.
Zellama
,
J. F.
Morhange
, and
P.
Elkaim
,
J. Non-Cryst. Solids
227
,
906
(
1998
).
10.
D. V.
Tsu
,
B. S.
Chao
, and
S. R.
Ovshinski
,
Appl. Phys. Lett.
71
,
1317
(
1997
).
11.
T.
Ishidate
,
K.
Inoue
,
K.
Tsuji
, and
S.
Minomura
,
Solid State Commun.
42
,
197
(
1982
).
12.
W. M. M.
Kessels
,
R. J.
Severens
,
A. H. M.
Smets
,
B. A.
Korevaar
,
G. J.
Adriaenssens
,
D. C.
Schram
, and
M. C. M.
van de Sanden
,
J. Appl. Phys.
89
,
2404
(
2001
).
13.
B. A. Korevaar, C. Smit, R. A. C. M. M. van Swaaij, A. H. M. Smets, W. M. M. Kessels, J. W. Metselaar, D. C. Schram, and M. C. M. van de Sanden, Proceedings of the 16th European Photovoltaic Solar Energy Conference (James & James Ltd. (Science Publishers), London, 2000), B119.
14.
H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures, 2nd ed. (Wiley, New York, 1974).
15.
Z.
Iqbal
and
S.
Vepřek
,
J. Phys. C
15
,
377
(
1982
).
16.
R.
Tsu
,
J.
Gonzalez-Hernandez
,
S. S.
Chao
,
S. C.
Lee
, and
K.
Tanaka
,
Appl. Phys. Lett.
40
,
534
(
1982
).
17.
A. T.
Voutsas
,
M. K.
Hatalis
,
J.
Boyce
, and
A.
Chiang
,
J. Appl. Phys.
78
,
6999
(
1995
).
18.
E.
Bustarret
,
M. A.
Hachicha
, and
M.
Brunel
,
Appl. Phys. Lett.
52
,
1675
(
1988
).
19.
S.
Vepřek
,
F. A.
Sarot
, and
Z.
Iqbal
,
Phys. Rev. B
36
,
3344
(
1987
).
20.
Since not all information is available, all Gaussian line profile parameters were free to vary and we included the data in the range 400 cm−1 to 550 cm−1 in the fitting procedure.
21.
The data range that is included in the fit procedure is not mentioned, so we took the range of 400 cm−1 to 550 cm−1 in the fitting procedure.
22.
C.
Ossadnik
,
S.
Vepřek
, and
I.
Gregora
,
Thin Solid Films
337
,
148
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.