Simple and tractable analytical expressions for determining the pyroelectricity in ferroelectric 0-3 composites have been developed. For the dilute suspension limit, expressions for the effective pyroelectric and other thermal electromechanical properties are derived within the framework of the Maxwell–Wagner approach. Then, an effective-medium theory is employed to examine the first and second pyroelectric coefficients in the concentrated suspension regime. The effective-medium approach as compared to the Maxwell–Wagner approach results in a better agreement with known experimental data up to higher volume fraction of inclusions. The pyroelectricity of 0-3 composites of ceramic inclusions embedded in the P(VDF–TrFE) copolymer matrix and of P(VDF–TrFE) inclusions embedded in a ceramic matrix are analyzed numerically under different polarization configurations. The theoretical predictions show that the secondary pyroelectric effects in composite systems with ceramic as the matrix are stronger than those with the copolymer as the matrix and can sometimes dominate the pyroelectricity for certain compositions.

1.
P.
Muralt
,
Rep. Prog. Phys.
64
,
1339
(
2001
).
2.
R.
Watton
,
Ferroelectrics
91
,
87
(
1989
).
3.
A.
Seifert
,
L.
Sagalowicz
,
P.
Muralt
, and
N.
Setter
,
Appl. Phys. Lett.
72
,
2409
(
1998
).
4.
R. E.
Newnham
,
D. P.
Skinner
, and
L. E.
Cross
,
Mater. Res. Bull.
13
,
525
(
1978
).
5.
A. S.
Bhalla
,
R. E.
Newnham
,
L. E.
Cross
,
W. A.
Schulze
,
J. P.
Dougherty
, and
W. A.
Smith
,
Ferroelectrics
33
,
139
(
1981
).
6.
H. L. W.
Chan
,
P. K. L.
Ng
, and
C. L.
Choy
,
Appl. Phys. Lett.
74
,
3031
(
1999
).
7.
C. J. Dias and D. K. Das-Gupta, Key Engineering Materials: Ferroelectric Polymers and Ceramic Polymer Composites (Terms Tech Publications, Zurich, 1994), Vol. 92-93, p. 217.
8.
H.
Yamazaki
and
T.
Kitayama
,
Ferroelectrics
33
,
147
(
1981
).
9.
J.
Yamada
,
T.
Ueda
, and
T.
Kitayama
,
J. Appl. Phys.
53
,
4328
(
1982
).
10.
Y. G.
Wang
,
W. L.
Zhong
, and
P. L.
Zhang
,
J. Appl. Phys.
53
,
521
(
1993
).
11.
C. W.
Nan
,
Phys. Rev. B
49
,
12619
(
1994
).
12.
V. M.
Levin
and
A. G.
Luchaninov
,
J. Phys. D
34
,
3058
(
2001
).
13.
J. Nye, Physical Properties of Crystals (Oxford University Press, London, U.K., 1979).
14.
R. M. Christensen, Mechanics of Composite Materials (Wiley, New York, 1979), Chap. 4.
15.
L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, Washington, DC, 1997), Chap. 1.
16.
Z.
Hashin
,
J. Appl. Mech.
29
,
143
(
1962
).
17.
V. M. Levin, Mekh. Tela. 88, (1968) (in Russian).
18.
R. Coelho, Physics of Dielectrics for the Engineer (Elsevier Scientific, Amsterdam, 1979).
19.
B.
Ploss
,
B.
Ploss
,
F. G.
Shin
,
H. L. W.
Chan
, and
C. L.
Choy
,
Proc. IEEE
1
,
301
(
2001
).
20.
B.
Ploss
,
B.
Ploss
,
F. G.
Shin
,
H. L. W.
Chan
, and
C. L.
Choy
,
Appl. Phys. Lett.
76
,
2776
(
2000
).
21.
A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
636
(
1935
).
22.
C. K.
Wong
,
Y. M.
Poon
, and
F. G.
Shin
,
J. Appl. Phys.
90
,
4690
(
2001
).
23.
A. S.
Bhalla
,
R. E.
Newnham
,
L. E.
Cross
, and
W. A.
Schulze
,
Ferroelectrics
33
,
139
(
1981
).
24.
W. Y.
Ng
,
Bernd
Ploss
,
H. L. W.
Chan
,
F. G.
Shin
, and
C. L.
Choy
,
Proc. IEEE
2
,
767
(
2001
).
25.
G.
Shirane
and
S.
Hashino
,
J. Phys. Soc. Jpn.
6
,
265
(
1951
).
This content is only available via PDF.
You do not currently have access to this content.