The effect of the Ga/N flux ratio on the Mn incorporation, surface morphology, and lattice polarity during growth by rf molecular beam epitaxy of (Ga,Mn)N at a sample temperature of 550 °C is presented. Three regimes of growth, N-rich, metal-rich, and Ga-rich, are clearly distinguished by reflection high-energy electron diffraction and atomic force microscopy. Using energy dispersive x-ray spectroscopy, it is found that Mn incorporation occurs only for N-rich and metal-rich conditions. For these conditions, although x-ray diffraction in third order does not reveal any significant peak splitting or broadening, Rutherford backscattering clearly shows that Mn is not only incorporated but also substitutional on the Ga sites. Hence, we conclude that a MnxGa1−xN alloy is formed (in this case x∼5%), but there is no observable change in the c-axis lattice constant. We also find that the surface morphology is dramatically improved when growth is just slightly metal rich. When growth is highly metal-rich, but not Ga-rich, we find that Ga polarity flips to N polarity. It is concluded that the optimal growth of Ga-polar MnGaN by rf N-plasma molecular beam epitaxy occurs in the slightly metal-rich regime.

1.
T.
Dietl
,
H.
Ohno
,
F.
Matsukura
,
J.
Cibert
, and
D.
Ferrand
,
Science
287
,
1019
(
2000
).
2.
H.
Yang
,
H.
Al-Brithen
,
E.
Trifan
,
D. C.
Ingram
, and
A. R.
Smith
,
J. Appl. Phys.
91
,
1053
(
2002
).
3.
B. K.
Rao
and
P.
Jena
,
Phys. Rev. Lett.
89
,
185504
(
2002
).
4.
E.
Kulatov
,
H.
Nakayama
,
H.
Mariette
,
H.
Ohta
, and
Y. A.
Uspenskii
,
Phys. Rev. B
66
,
045203
(
2002
).
5.
L.
Kronik
,
M.
Jain
, and
J. R.
Chelikowsky
,
Phys. Rev. B
66
,
041203
(R) (
2002
).
6.
S.
Kuwabara
,
K.
Ishii
,
S.
Haneda
,
T.
Kondo
, and
H.
Munekata
,
Physica E (Amsterdam)
10
,
233
(
2001
).
7.
M.
Zaja̧c
,
J.
Gosk
,
M.
Kamińska
,
A.
Twardowski
,
T.
Szyszko
, and
S.
Podsiadlo
,
Appl. Phys. Lett.
79
,
2432
(
2001
).
8.
M.
Zaja̧c
,
R.
Doradziński
,
J.
Gosk
,
J.
Szczytko
,
M.
Lefeld-Sosnowska
,
M.
Kamińska
,
A.
Twardowski
,
M.
Palczewska
,
E.
Grzanka
, and
W.
Gȩbicki
,
Appl. Phys. Lett.
78
,
1276
(
2001
).
9.
S.
Kuwabara
,
T.
Kondo
,
T.
Chikyow
,
P.
Ahmet
, and
H.
Munekata
,
Jpn. J. Appl. Phys., Part 2
40
,
L724
(
2001
).
10.
M. E.
Overberg
,
C. R.
Abernathy
,
S. J.
Pearton
,
N. A.
Theodoropoulou
,
K. T.
McCarthy
, and
A. F.
Hebard
,
Appl. Phys. Lett.
79
,
1312
(
2001
).
11.
G. T.
Thaler
,
M. E.
Overberg
,
B.
Gila
,
R.
Frazier
,
C. R.
Abernathy
,
S. J.
Pearton
,
J. S.
Lee
,
S. Y.
Lee
,
Y. D.
Park
,
Z. G.
Khim
,
J.
Kim
, and
F.
Ren
,
Appl. Phys. Lett.
80
,
3964
(
2002
).
12.
Y.
Cui
and
L.
Li
,
Appl. Phys. Lett.
80
,
4139
(
2002
).
13.
S.
Sonoda
,
S.
Shimizu
,
T.
Sasaki
,
Y.
Yamamoto
, and
H.
Hori
,
J. Cryst. Growth
237
,
1358
(
2002
).
14.
S.
Sonoda
,
H.
Hori
,
Y.
Yamamoto
,
T.
Sasaki
,
M.
Sato
,
S.
Shimizu
,
K.-I.
Suga
, and
K.
Kindo
,
IEEE Trans. Magn.
38
,
2859
(
2002
).
15.
R.
Held
,
D. E.
Crawford
,
A. M.
Johnson
,
A. M.
Dabiran
, and
P. I.
Cohen
,
J. Electron. Mater.
26
,
272
(
1997
);
R. A.
Held
,
G.
Nowak
,
B. E.
Ishaug
,
S. M.
Seutter
,
A.
Parkhomovsky
,
A. M.
Dabiran
,
P. I.
Cohen
,
I.
Grzegory
, and
S.
Porowski
,
J. Appl. Phys.
85
,
7697
(
1999
).
16.
E. J.
Tarsa
,
B.
Heying
,
X. H.
Wu
,
P.
Fini
,
S. P.
DenBaars
, and
J. S.
Speck
,
J. Appl. Phys.
82
,
5472
(
1997
).
17.
R. M.
Feenstra
,
H.
Chen
,
V.
Ramachandran
,
C. D.
Lee
,
A. R.
Smith
,
J. E.
Northrup
,
T.
Zyweitz
,
J.
Neugebauer
, and
D. W.
Greve
,
Surf. Rev. Lett.
7
,
601
(
2000
).
18.
T.
Zywietz
,
J.
Neugebauer
, and
M.
Scheffler
,
Appl. Phys. Lett.
73
,
487
(
1998
).
19.
A. R.
Smith
,
R. M.
Feenstra
,
D. W.
Greve
,
M.-S.
Shin
,
M.
Skowronski
,
J.
Neugebauer
, and
J. E.
Northrup
,
Surf. Sci.
423
,
70
(
1999
).
20.
J. E.
Northrup
,
J.
Neugebauer
,
R. M.
Feenstra
, and
A. R.
Smith
,
Phys. Rev. B
61
,
9932
(
2000
).
21.
A. R.
Smith
,
R. M.
Feenstra
,
D. W.
Greve
,
M.-S.
Shin
,
M.
Skowronski
,
J.
Neugebauer
, and
J. E.
Northrup
,
Appl. Phys. Lett.
72
,
2114
(
1998
).
22.
V.
Ramachandran
,
R. M.
Feenstra
,
W. L.
Sarney
,
L.
Salamanca-Riba
,
J. E.
Northrup
,
L. T.
Romano
, and
D. W.
Greve
,
Appl. Phys. Lett.
75
,
808
(
1999
).
23.
L. R.
Doolittle
,
Nucl. Instrum. Methods Phys. Res. B
9
,
334
(
1985
).
24.
National Compound Semiconductor Roadmap, http://ncsr.csci-va.com
25.
K.
Sato
and
H.
Katayama-Yoshida
,
Semicond. Sci. Technol.
17
,
367
(
2002
).
26.
M.
Tanaka
,
J. P.
Harbison
,
T.
Sands
,
B.
Philips
,
T. L.
Cheeks
,
J. De
Boeck
,
L. T.
Florez
, and
V. G.
Keramidas
,
Appl. Phys. Lett.
63
,
696
(
1993
).
27.
K.-M.
Ching
,
W.-D.
Chang
, and
T.-S.
Chin
,
Appl. Surf. Sci.
92
,
471
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.