We have performed ab initio studies of the effect of substitutions on the phase stabilities of Ti1−xAlxN,x=0−1. The nonmetal substitutions studied include B, C, O, and Si. Metal substitutions studied include Sc, Zr, V, Cr, and Mn. The main objective has been to suggest substitutions that increase the thermal stability of the NaCl structure of Ti1−xAlxN at high Al contents. From these extensive and consistent calculations, some possible avenues for such stabilization present themselves, among which substitution with nonmetal C and Si, and metal V, Cr, and Mn are found to be the most promising.

1.
M.
Wittmer
,
J.
Noster
, and
H.
Melchior
,
J. Appl. Phys.
52
,
6659
(
1981
).
2.
O.
Knotek
,
M.
Böhmer
, and
T.
Leydendecker
,
J. Vac. Sci. Technol. A
4
,
2695
(
1986
).
3.
T.
Leydendecker
,
O.
Lemmer
,
S.
Esser
, and
J.
Ebberink
,
Surf. Coat. Technol.
48
,
1775
(
1991
).
4.
T.
Suzuki
,
Y.
Makino
,
M.
Samandi
, and
S.
Miyake
,
J. Mater. Sci.
35
,
4193
(
2000
).
5.
O.
Knotek
and
T.
Leydendecker
,
J. Solid State Chem.
70
,
318
(
1987
).
6.
H.
Hasegawa
,
A.
Kimura
, and
T.
Suzuki
,
Surf. Coat. Technol.
132
,
76
(
2000
).
7.
W. D.
Munz
,
J. Vac. Sci. Technol. A
4
,
2717
(
1986
).
8.
A.
Neckel
,
Int. J. Quantum Chem.
23
,
1317
(
1983
).
9.
K.
Schwarz
,
CRC Crit. Rev. Solid State Mater. Sci.
13
,
3211
(
1987
).
10.
S.
Jhi
,
J.
Ihm
,
S. G.
Louie
, and
M. L.
Cohen
,
Nature (London)
399
,
132
(
1999
).
11.
K. E.
Tan
,
A. M.
Bratkovsky
,
R. M.
Harris
,
A. P.
Horsfield
,
D.
Nguyen-Mahn
,
D. G.
Pettifor
, and
A. P.
Sutton
,
Modell. Simul. Mater. Sci. Eng.
5
,
187
(
1997
).
12.
H. W.
Hugosson
,
P.
Korzhavyi
,
U.
Jansson
,
B.
Johansson
, and
O.
Eriksson
,
Phys. Rev. B
63
,
165116
(
2001
).
13.
H. W.
Hugosson
,
U.
Jansson
,
B.
Johansson
, and
O.
Eriksson
,
Science
293
,
2434
(
2001
);
H. W.
Hugosson
,
U.
Jansson
,
B.
Johansson
, and
O.
Eriksson
,
Phys. Rev. B
63
,
134108
(
2001
).
14.
J.
Petru
,
J.
Klima
, and
P.
Herzig
,
Z. Phys. B: Condens. Matter
76
,
483
(
1989
).
15.
D.
Vogtenhuber-Pawelczak
,
P.
Herzig
, and
J.
Klima
,
Z. Phys. B: Condens. Matter
84
,
211
(
1991
).
16.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
);
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
);
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
55
,
11169
(
1996
).
17.
D. M.
Ceperley
and
B. J.
Adler
,
Phys. Rev. Lett.
45
,
566
(
1980
).
18.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
41
,
7892
(
1981
).
19.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
20.
Hexagonal Mn is theoretically more stable than body-centered-cubic (bcc) Mn by 0.138 eV/atom. The calculated lattice constant a for bcc Mn was 1.207 Å, and for hexagonal a=2.43 Å and c/a=1.59.
21.
P. Villars, Pearsons Handbook: Crystallographic Data for Intermetallic Phases (ASM International, 1997).
22.
H. W. Hugosson, O. Eriksson, U. Jansson, and I. Abrikosov, (unpublished).
23.
JCPDS-Powder Diffraction File, International Center for Diffraction Data, 1601 Park Lane, Swarthmore, Pennsylvania 19081-2389.
24.
An O2 molecule was also created in order to calculate energies of formation, The intramolecular distance in the molecule was found to be 1.223 Å, in good agreement with the experimental value.
25.
The most stable structure of CrN is actually an orthorhombic structure, but the NaCl-structure has also been reported in the literature, indicating that the energy difference between these two structures is not large. No stable mononitride is reported for MnN.
This content is only available via PDF.
You do not currently have access to this content.