The 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 (PMN–32.5PT) ceramic composition (with 1 wt. % excess PbO) was fiber textured in the 〈001〉 direction by the templated grain growth process using 5 vol % oriented {001}-BaTiO3 platelet crystals as the templates. The templated ceramics annealed at 1150 °C for 5 h attained texture fractions as high as 0.9. The fiber-textured samples showed an increase in the piezoelectric, electromechanical coupling, and compliance coefficients when poled and measured in the 〈001〉-textured direction. The low drive field (<5 kV/cm)d33 coefficients in the 〈001〉, measured directly from unipolar strain-field measurements, were ∼1150 pC/N. This d33 coefficient is 1.2–1.5 times greater than randomly oriented samples. The poled εmax and εrt for a 0.9-textured PMN–32.5PT ceramic were 21 500 and 2450, respectively. Factors limiting further property improvements are discussed.

1.
S.-E.
Park
and
T. R.
Shrout
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
140
(
1997
).
2.
S.-E.
Park
and
T. R.
Shrout
,
J. Appl. Phys.
82
,
1804
(
1997
).
3.
J.
Yin
and
W.
Cao
,
J. Appl. Phys.
87
,
7438
(
2000
).
4.
S-E
Park
,
S.
Wada
,
L. E.
Cross
, and
T. R.
Shrout
,
J. Appl. Phys.
86
,
2746
(
1999
).
5.
P. W.
Rehrig
,
S.-E.
Park
,
S.
Trolier-McKinstry
,
G. L.
Messing
,
B.
Jones
, and
T. R.
Shrout
,
J. Appl. Phys.
86
,
1657
(
1999
).
6.
J.-P.
Maria
,
W.
Hackenberger
, and
S.
Trolier-McKinstry
,
J. Appl. Phys.
84
,
5147
(
1998
).
7.
J. H.
Park
,
F.
Xu
, and
S.
Trolier-McKinstry
,
J. Appl. Phys.
89
,
568
(
2001
).
8.
C.
Duran
,
S.
Trolier-McKinstry
, and
G. L.
Messing
,
J. Am. Ceram. Soc.
83
,
2203
(
2000
).
9.
K.
Nagata
and
K.
Okazaki
,
Jpn. J. Appl. Phys., Part 1
24
,
812
(
1985
).
10.
J. A.
Horn
,
S. C.
Zhang
,
U.
Selvaraj
,
G. L.
Messing
, and
S.
Trolier-McKinstry
,
J. Am. Ceram. Soc.
82
,
921
(
1999
).
11.
S.-H.
Hong
,
S.
Trolier-McKinstry
, and
G. L.
Messing
,
J. Am. Ceram. Soc.
83
,
113
(
2000
).
12.
E. M.
Sabolsky
,
A. R.
James
,
S.
Kwon
,
S.
Trolier-McKinstry
, and
G. L.
Messing
,
Appl. Phys. Lett.
78
,
2551
(
2001
).
13.
B. Brahmaroutu, Ph.D. thesis, Pennsylvania State University, 1999.
14.
M. M.
Seabaugh
,
I. H.
Kerscht
, and
G. L.
Messing
,
J. Am. Ceram. Soc.
80
,
1181
(
1997
).
15.
J. P.
Remeika
,
J. Am. Chem. Soc.
76
,
940
(
1954
).
16.
F. K.
Lotgering
,
J. Inorg. Nucl. Chem.
9
,
113
(
1959
).
17.
The Institute of Electrical and Electronics Engineers, Inc., An American National Standard, IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987, New York, 1988.
18.
E. M.
Sabolsky
,
S.
Trolier-McKinstry
, and
G. L.
Messing
,
J. Am. Ceram. Soc.
84
,
2507
(
2001
).
19.
M. K.
Durbin
,
J. C.
Hicks
,
S.-E.
Park
, and
T. R.
Shrout
,
J. Appl. Phys.
87
,
8159
(
2000
).
20.
S. L.
Swartz
,
T. R.
Shrout
,
W. A.
Schulze
, and
L. E.
Cross
,
J. Am. Ceram. Soc.
67
,
311
(
1984
).
21.
J.
Chen
and
M. P.
Harmer
,
J. Am. Ceram. Soc.
73
,
68
(
1990
).
22.
H. C.
Ling
,
A. M.
Jackson
,
M. F.
Yan
, and
W. W.
Rhodes
,
J. Mater. Res.
5
,
629
(
1990
).
23.
H.-C.
Wang
and
W. A.
Schulze
,
J. Am. Ceram. Soc.
73
,
825
(
1990
).
24.
M.
Villegas
,
A. C.
Caballero
,
M.
Kosec
,
C.
Moure
,
P.
Duran
, and
J. F.
Fernandez
,
J. Mater. Res.
14
,
891
(
1999
).
25.
M. H.
Frey
,
Z.
Xu
,
P.
Han
, and
D. A.
Payne
,
Ferroelectrics
206/207
,
337
(
1998
).
26.
P.
Papet
,
J. P.
Dougherty
, and
T. R.
Shrout
,
J. Mater. Res.
12
,
2902
(
1990
).
27.
C. A.
Randall
,
A. D.
Hilton
,
D. J.
Barber
, and
T. R.
Shrout
,
J. Mater. Res.
8
,
880
(
1993
).
28.
R. A. Fry, M. S. thesis, The Pennsylvania State University, 1992.
29.
S. W.
Choi
,
T. R.
Shrout
,
S. J.
Jang
, and
A. S.
Bhalla
,
Mater. Lett.
8
,
253
(
1989
).
30.
S. W.
Choi
,
T. R.
Shrout
,
S. J.
Jang
, and
A. S.
Bhalla
,
Ferroelectrics
100
,
29
(
1989
).
31.
J.
Zhao
,
Q. M.
Zhang
,
N.
Kim
, and
T.
Shrout
,
Jpn. J. Appl. Phys., Part 1
34
,
5658
(
1995
).
32.
A. D.
Hilton
,
C. A.
Randall
,
D. J.
Barber
, and
T. R.
Shrout
,
Ferroelectrics
93
,
379
(
1989
).
33.
J.
Kelly
,
M.
Leonard
,
C.
Tantigate
, and
A.
Safari
,
J. Am. Ceram. Soc.
80
,
957
(
1997
).
34.
X.
Zhang
and
F.
Fang
,
J. Mater. Res.
14
,
4581
(
1999
).
35.
K.
Okazaki
and
K.
Nagata
,
J. Am. Ceram. Soc.
56
,
82
(
1973
).
36.
M.
Kiyohara
,
K.
Katoh
, and
K.
Nagata
,
J. Ceram. Soc. Jpn.
104
,
201
(
1996
).
37.
S.-Y.
Chen
,
S.-Y.
Cheng
, and
S.-M.
Wang
,
J. Am. Ceram. Soc.
74
,
400
(
1991
).
38.
Y. S.
Cho
,
S. M.
Pilgrim
,
H.
Giesche
, and
K.
Bridger
,
J. Am. Ceram. Soc.
83
,
2473
(
2000
).
39.
O.
Sakurai
,
M.
Katsumoto
,
K.
Shinozaki
, and
N.
Mizutani
,
J. Ceram. Soc. Jpn.
101
,
594
(
1993
).
40.
A.
Halliyal
,
U.
Kumar
,
R. E.
Newnham
, and
L. E.
Cross
,
Am. Ceram. Soc. Bull.
66
,
671
(
1987
).
41.
J. R.
Belsick
,
A.
Halliyal
,
U.
Kumar
, and
R. E.
Newnham
,
Am. Ceram. Soc. Bull.
66
,
664
(
1987
).
42.
F.
Chu
,
I. M.
Reaney
, and
N.
Setter
,
J. Appl. Phys.
77
,
1671
(
1995
).
43.
B.-Y.
Ahn
and
N.-K.
Kim
,
J. Am. Ceram. Soc.
83
,
1720
(
2000
).
44.
W. Cao, Associate Professor of Mathematics and Materials Science, Penn State University (personal communication, 2001).
45.
T. R.
Shrout
,
Z. P.
Chang
,
N.
Kim
, and
S.
Markgraf
,
Ferroelectr. Lett. Sect.
12
,
63
(
1990
).
46.
S.
Li
,
W.
Cao
, and
L. E.
Cross
,
J. Appl. Phys.
69
,
7219
(
1991
).
47.
Q. M.
Zhang
,
H.
Wang
,
N.
Kim
, and
L. E.
Cross
,
J. Appl. Phys.
75
,
454
(
1994
).
48.
S. C.
Hwang
and
G.
Arlt
,
J. Appl. Phys.
87
,
869
(
2000
).
49.
F.
Xu
,
S.
Trolier-McKinstry
,
W.
Ren
,
B.
Xu
,
Z.-L.
Xie
, and
K. J.
Hemker
,
J. Appl. Phys.
89
,
1336
(
2001
).
50.
D.-S.
Paik
,
S.-E.
Park
,
S.
Wada
,
S.-F.
Liu
, and
T. R.
Shrout
,
J. Appl. Phys.
85
,
1080
(
1999
).
51.
N. A.
Pertsev
,
A. G.
Zembilgotov
, and
R.
Waser
,
J. Appl. Phys.
84
,
1524
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.