Using both analytical and experimental methods, we show that micron scale patterned growth of small molecular weight organic semiconductor thin films can be achieved by the recently demonstrated process of organic vapor phase deposition (OVPD). In contrast to the conventional process of vacuum thermal evaporation, the background gas pressure during OVPD is typically 0.1–10 Torr, resulting in a molecular mean free path (mfp) of from 100 to 1 μm, respectively. Monte Carlo simulations of film growth through apertures at these gas densities indicate that when the mfp is on the order of the mask-to-substrate separation, deposit edges can become diffuse. The simulations and deposition experiments discussed here indicate that the deposited feature shape is controlled by the mfp, the aperture geometry, and the mask-to-substrate separation. Carefully selected process conditions and mask geometries can result in features as small as 1 μm. Furthermore, based on continuum and stochastic models of molecular transport in confined geometries, we propose the in situ direct patterning growth technique of organic vapor jet printing. The high pattern definition obtained by OVPD makes this process attractive for the growth of a wide range of structures employed in modern organic electronic devices.

1.
C. D.
Dimitrakopoulos
and
D. J.
Mascaro
,
IBM J. Res. Dev.
45
,
11
(
2001
).
2.
S. R.
Forrest
,
IEEE J. Sel. Top. Quantum Electron.
6
,
1072
(
2000
).
3.
S. R. Forrest, P. E. Burrows, and M. E. Thompson, IEEE Spectrum Aug., 32 (2000).
4.
C. J.
Drury
,
C. M. J.
Mutsaers
,
C. M.
Hart
,
M.
Matters
, and
D. M.
Leeuw
,
Appl. Phys. Lett.
73
,
108
(
1998
).
5.
S. R.
Forrest
,
Chem. Rev.
97
,
1793
(
1997
).
6.
C. D.
Dimitrakopoulos
,
I.
Kymissis
,
S.
Purushothaman
,
D. A.
Neumayer
,
P. R.
Duncombe
, and
R. B.
Laibowitz
,
Adv. Mater.
11
,
1372
(
1999
).
7.
C.
Kim
,
P. E.
Burrows
, and
S. R.
Forrest
,
Science
288
,
831
(
2000
).
8.
G. H.
Gelinck
,
T. C. T.
Geuns
, and
D. M.
de Leeuw
,
Appl. Phys. Lett.
77
,
1487
(
2000
).
9.
T. R.
Hebner
,
C. C.
Wu
,
D.
Marcy
,
M. H.
Lu
, and
J. C.
Sturm
,
Appl. Phys. Lett.
72
,
519
(
1998
).
10.
H.
Kobayashi
et al.
Synth. Met.
111
,
125
(
2000
).
11.
D. G.
Lidzey
,
D. D. C.
Bradley
,
S. J.
Martin
, and
M. A.
Pate
,
IEEE J. Sel. Top. Quantum Electron.
4
,
113
(
1998
).
12.
H.
Sirringhaus
,
T.
Kawase
, and
R. H.
Friend
,
MRS Bull.
26
,
539
(
2001
).
13.
M. S.
Weaver
and
D. D. C.
Bradley
,
Synth. Met.
83
,
61
(
1996
).
14.
Y.
Yang
,
S. C.
Chang
,
J.
Bharathan
, and
J.
Liu
,
J. Mater. Sci.: Mater. Electron.
11
,
89
(
2000
).
15.
R. J.
Jackman
,
S. T.
Brittain
,
A.
Adams
,
M. G.
Prentiss
, and
G. M.
Whitesides
,
Science
280
,
2089
(
1998
).
16.
S.
Brittain
,
K.
Paul
,
X.-M.
Zhao
, and
G.
Whitesides
,
Phys. World
11
,
31
(
1998
).
17.
J. A.
Rogers
,
MRS Bull.
26
,
530
(
2001
).
18.
P. F.
Tian
,
V.
Bulovic
,
P. E.
Burrows
,
G.
Gu
,
S. R.
Forrest
, and
T. X.
Zhou
,
J. Vac. Sci. Technol. A
17
,
2975
(
1999
).
19.
P. F.
Tian
,
P. E.
Burrows
, and
S. R.
Forrest
,
Appl. Phys. Lett.
71
,
3197
(
1997
).
20.
P. E.
Burrows
,
S. R.
Forrest
,
L. S.
Sapochak
,
J.
Schwartz
,
P.
Fenter
,
T.
Buma
,
V. S.
Ban
, and
J. L.
Forrest
,
J. Cryst. Growth
156
,
91
(
1995
).
21.
M. A.
Baldo
,
M.
Deutsch
,
P. E.
Burrows
,
H.
Gossenberger
,
M.
Gerstenberg
,
V. S.
Ban
, and
S. R.
Forrest
,
Adv. Mater.
10
,
1505
(
1998
).
22.
M. A.
Baldo
,
V. G.
Kozlov
,
P. E.
Burrows
,
S. R.
Forrest
,
V. S.
Ban
,
B.
Koene
, and
M. E.
Thompson
,
Appl. Phys. Lett.
71
,
3033
(
1997
).
23.
M.
Shtein
,
H.
Gossenberger
,
J.
Benziger
, and
S.
Forrest
,
J. Appl. Phys.
89
,
1470
(
2001
).
24.
M.
Shtein
,
J.
Mapel
,
J. B.
Benziger
, and
S. R.
Forrest
,
Appl. Phys. Lett.
81
,
268
(
2002
).
25.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (J Wiley, New York, 1965).
26.
G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 2nd ed. (Oxford University Press, Oxford, 1994).
27.
R. Bird, W. Stewart, and E. Lightfoot, Momentum, Heat and Mass Transfer (J Wiley, New York, 1996).
28.
H. Schlichting, Boundary-Layer Theory, 6 ed. (McGraw-Hill, New York, 1968).
29.
unpublished.
30.
W.
Stechelmacher
,
Rep. Prog. Phys.
49
,
1083
(
1986
).
31.
J. M.
Guevremont
,
S.
Sheldon
, and
F.
Zaera
,
Rev. Sci. Instrum.
71
,
3869
(
2000
).
32.
S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era : Process Technology, Vol. 1, 2nd ed. (Lattic Press, 1999).
33.
Y.
Akiyama
and
N.
Imaishi
,
Appl. Phys. Lett.
67
,
620
(
1995
).
34.
S. K.
Griffiths
and
R. H.
Nilson
,
J. Electrochem. Soc.
145
,
1263
(
1998
).
35.
H. C.
Wulu
,
K. C.
Saraswat
, and
J. P.
McVittie
,
J. Electrochem. Soc.
138
,
1831
(
1991
).
36.
K.
Yase
,
Y.
Takahashi
,
N.
Ara-Kato
, and
A.
Kwazu
,
Jpn. J. Appl. Phys., Part 1
34
,
636
(
1995
).
37.
K.
Yase
,
Y.
Yoshida
,
T.
Uno
, and
N.
Okui
,
J. Cryst. Growth
166
,
942
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.