Charge carriers are photogenerated with very different spatial distributions in conventional inorganic photovoltaic (IPV) cells and in organic photovoltaic (OPV or excitonic) cells. This leads to a fundamental, and often overlooked, mechanistic difference between them. Carriers are generated primarily at the exciton-dissociating heterointerface in OPV cells, resulting in the production of electrons in one phase and holes in the other—the two carrier types are thus already separated across the interface upon photogeneration in OPV cells, giving rise to a powerful chemical potential energy gradient ∇μhv that promotes the photovoltaic effect. This occurs also in high-surface-area OPV cells, although their description is more complex. In contrast, both carrier types are photogenerated together throughout the bulk in IPV cells: ∇μhv then drives both electrons and holes in the same direction through the same phase; efficient carrier separation therefore requires a built-in equilibrium electrical potential energy difference bi across the cell. The open-circuit photovoltage Voc is thus limited to bi in IPV cells, but it is often greater than bi in OPVs. The basic theory necessary to compare IPVs to OPVs is reviewed. Relevant experiments are described, and numerical simulations that compare semiconductor devices differing only in the spatial distribution of photogenerated carriers are presented to demonstrate this fundamental distinction between the photoconversion mechanisms of IPV and OPV devices.

1.
A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion (Academic, New York, 1983).
2.
A.
Hagfeldt
and
M.
Grätzel
,
Acc. Chem. Res.
33
,
269
(
2000
).
3.
P.
Peumans
,
V.
Bulovic
, and
S. R.
Forrest
,
Appl. Phys. Lett.
76
,
2650
(
2000
).
4.
S. E.
Shaheen
,
C. J.
Brabec
,
N. S.
Sariciftci
,
F.
Padinger
, and
T.
Fromherz
,
Appl. Phys. Lett.
78
,
841
843
(
2001
).
5.
J. Simon and J.-J. Andre, Molecular Semiconductors (Springer-Verlag, Berlin, 1985).
6.
M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).
7.
B. A.
Gregg
,
Chem. Phys. Lett.
258
,
376
(
1996
).
8.
S. A.
Jenekhe
and
S.
Yi
,
Appl. Phys. Lett.
77
,
2635
(
2000
).
9.
J. J. M.
Halls
,
C. A.
Walsh
,
N. C.
Greenham
,
E. A.
Marseglia
,
R. H.
Friend
,
S. C.
Moratti
, and
A. B.
Holmes
,
Nature (London)
376
,
498
(
1995
).
10.
G.
Yu
,
J.
Gao
,
J. C.
Hummelen
,
F.
Wudl
, and
A. J.
Heeger
,
Science
270
,
1789
(
1995
).
11.
W. U.
Huynh
,
J. J.
Dittmer
, and
A. P.
Alivisatos
,
Science
295
,
2425
(
2002
).
12.
C. J.
Brabec
,
A.
Cravino
,
D.
Meissner
,
N. S.
Sariciftci
,
T.
Fromherz
,
M. T.
Rispens
,
L.
Sanchez
, and
J. C.
Hummelen
,
Adv. Funct. Mater.
11
,
374
(
2001
).
13.
A. J.
Nozik
,
Physica E (Amsterdam)
14
,
115
(
2002
).
14.
B. A. Gregg, in Molecules as Components in Electronic Devices, edited by M. Lieberman (American Chemical Society, Washington, D.C., 2002).
15.
I. H.
Campbell
,
T. W.
Hagler
,
D. L.
Smith
, and
J. P.
Ferraris
,
Phys. Rev. Lett.
76
,
1900
(
1996
).
16.
Z. D.
Popovic
,
A.-M.
Hor
, and
R. O.
Loutfy
,
Chem. Phys.
127
,
451
457
(
1988
).
17.
S. J. Fonash, Solar Cell Device Physics (Academic, New York, 1981).
18.
B. A.
Gregg
,
M. A.
Fox
, and
A. J.
Bard
,
J. Phys. Chem.
94
,
1586
(
1990
).
19.
B. A. Gregg, in Semiconductor Photochemistry and Photophysics; Vol. 10, edited by K. S. Schanze and V. Ramamurthy (Marcel Dekker, New York, 2002), pp. 51–87.
20.
B. A.
Gregg
,
Appl. Phys. Lett.
67
,
1271
(
1995
).
21.
C. W.
Tang
,
Appl. Phys. Lett.
48
,
183
(
1986
).
22.
B. A.
Gregg
,
J.
Sprague
, and
M.
Peterson
,
J. Phys. Chem. B
101
,
5362
(
1997
).
23.
A. A.
Zakhidov
and
K.
Yoshino
,
Synth. Met.
64
,
155
(
1994
).
24.
V. M.
Kenkre
,
P. E.
Parris
, and
D.
Schmidt
,
Phys. Rev. B
32
,
4946
(
1985
).
25.
Y.
Wang
and
A.
Suna
,
J. Phys. Chem. B
101
,
5627
(
1997
).
26.
B. A.
Gregg
,
F.
Pichot
,
S.
Ferrere
, and
C. L.
Fields
,
J. Phys. Chem. B
105
,
1422
(
2001
).
27.
J. E.
Moser
and
M.
Grätzel
,
Chem. Phys.
176
,
493
(
1993
).
28.
K.
Kalyanasundaram
and
M.
Grätzel
,
Coord. Chem. Rev.
77
,
347
(
1998
).
29.
S. A.
Haque
,
Y.
Tachibana
,
D. R.
Klug
, and
J. R.
Durrant
,
J. Phys. Chem. B
102
,
1745
(
1998
).
30.
J. S.
Salafsky
,
W. H.
Lubberhuizen
,
E.
van Faassen
, and
R. E. I.
Schropp
,
J. Phys. Chem. B
102
,
766
(
1998
).
31.
S. A.
Haque
,
Y.
Tachibana
,
R. L.
Willis
,
J. E.
Moser
,
M.
Grätzel
,
D. R.
Klug
, and
J. R.
Durrant
,
J. Phys. Chem. B
104
,
538
(
2000
).
32.
F.
Pichot
and
B. A.
Gregg
,
J. Phys. Chem. B
104
,
6
(
2000
).
33.
B. A.
Gregg
and
Y. I.
Kim
,
J. Phys. Chem.
98
,
2412
(
1994
).
34.
G. G.
Malliaras
,
J. R.
Salem
,
P. J.
Brock
, and
J. C.
Scott
,
J. Appl. Phys.
84
,
1583
(
1998
).
35.
C. M.
Ramsdale
,
J. A.
Barker
,
A. C.
Arias
,
J. D.
MacKenzie
,
R. H.
Friend
, and
N. C.
Greenham
,
J. Appl. Phys.
92
,
4266
(
2002
).
36.
I. Prigogine, Thermodynamics of Irreversible Processes, 3rd ed. (Wiley, New York, 1967).
37.
W. J. Moore, Physical Chemistry, 4th ed. (Prentice-Hall, Engelwood Cliffs, New Jersey, 1972).
38.
R. J. D. Miller, G. L. McLendon, A. J. Nozik, W. Schmickler, and F. Willig, Surface Electron Transfer Processes (VCH, New York, 1995).
39.
J.
Ferber
and
J.
Luther
,
J. Phys. Chem. B
105
,
4895
(
2001
). Although the authors did not emphasize this result, see Figs. 9 and 10.
40.
D.
Cahen
,
G.
Hodes
,
M.
Grätzel
,
J. F.
Guillemoles
, and
I.
Riess
,
J. Phys. Chem. B
104
,
2053
(
2000
).
41.
B.
Kraabel
,
D.
McBranch
,
N. S.
Sariciftci
,
D.
Moses
, and
A. J.
Heeger
,
Phys. Rev. B
50
,
18
543
(
1994
).
42.
D. W. Winston, PhD Thesis, University of Colorado, 1996.
43.
H. Z.
Fardi
,
D. W.
Winston
,
R. E.
Hayes
, and
M. C.
Hanna
,
IEEE Trans. Electron Devices
47
,
915
(
2000
).
44.
B. A.
Gregg
and
R. A.
Cormier
,
J. Am. Chem. Soc.
123
,
7959
7960
(
2001
).
45.
G.
Hodes
,
I. D. J.
Howell
, and
L. M.
Peter
,
J. Electrochem. Soc.
139
,
3136
3140
(
1992
).
46.
M.
Pfeiffer
,
A.
Beyer
,
T.
Fritz
, and
K.
Leo
,
Appl. Phys. Lett.
73
,
3202
(
1998
).
47.
See EPAPS Document No. E-JAPIAU-93-079306 for four pages of text on device and parameter files from our simulations.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory/epaps/. See the EPAPS homepage for more information.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.