A theoretical analysis of the Monte Carlo method for the solution of the stationary boundary value problem defined by the Boltzmann equation has been presented in Part I. Based on this analysis, the independent, identically distributed random variables of the simulated process are identified. Estimates of the stochastic error of the single-particle Monte Carlo method are derived. An event-biasing technique for carrier transport across an energy barrier is developed and its suitability for variance reduction is demonstrated.

1.
M.
Gray
,
T.
Booth
,
T.
Kwan
, and
C.
Snell
,
IEEE Trans. Electron Devices
45
,
918
(
1998
).
2.
P.
Poli
,
L.
Rota
, and
C.
Jacoboni
,
Appl. Phys. Lett.
55
,
1026
(
1989
).
3.
M.
Nedjalkov
and
P.
Vitanov
,
Solid-State Electron.
33
,
407
(
1990
).
4.
C.
Jacoboni
,
Tech. Dig. - Int. Electron Devices Meet.
1989
,
469
.
5.
R. Rubinstein, Simulation and the Monte Carlo Method (Wiley, New York, 1981).
6.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
7.
C.
Wordelman
,
T.
Kwan
, and
C.
Snell
,
IEEE Trans. Comput.-Aided Des.
17
,
1230
(
1998
).
8.
H. Kosina, M. Nedjalkov, and S. Selberherr, in Proceedings of the Modeling and Simulation of Microsystems, MSM 2001, edited by M. Laudon and B. Romanowicz (Computational Publications, Boston, 2001), pp. 11–14.
9.
R. Hockney and J. Eastwood, Computer Simulation Using Particles Hilger, Bristol, 1988).
10.
C. Jungemann, S. Yamaguchi, and H. Goto, in Proceedings, Simulation of Semiconductor Processes and Devices, Cambridge, MA, 1997, pp. 209-212.
11.
H.
Kim
,
H.
Min
,
T.
Wang
, and
Y.
Park
,
Solid-State Electron.
34
,
1251
(
1991
).
12.
C.
Jungemann
and
B.
Meinerzhagen
,
Tech. Dig. - Int. Electron Devices Meet.
2000
,
109
.
This content is only available via PDF.
You do not currently have access to this content.