Quantum calculations of leakage current through ultrathin dielectric heterostructures are used to propose design criteria for the next generation of metal-oxide-semiconductor devices in a deep submicron technology. By using as input parameters both the dielectric constant and the barrier height of different dielectrics, including at first stage SiO2,Si3N4,TiO2, and Ta2O5, but also such emerging materials as HfO2 and ZrO2, we show that, depending on the voltage range investigated, the hierarchy between those dielectrics is not simply given by the increase of their permittivity. Deeper considerations based on resonant tunneling mechanisms, of prime importance when dielectric heterostructures are used for fabrication purposes, must be taken into account especially for the future low-consumption nanotransistors with operating voltages below 1 V.

1.
See The International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 2002), see also http://public.itrs.net/ for the most recent updates.
2.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
3.
X.
Guo
and
T. P.
Ma
,
IEEE Electron Device Lett.
19
,
207
(
1998
).
4.
T.
Ito
,
T.
Nakamura
, and
H.
Ishikawa
,
IEEE Trans. Electron Devices
29
,
498
(
1982
).
5.
S.
Song
,
W. S.
Kim
,
J. S.
Lee
,
T. H.
Choe
,
J. K.
Choi
,
M. S.
Kang
,
U. I.
Chung
,
N. I.
Lee
,
K.
Fujihara
, and
H. K.
Kang
,
Tech. Dig. VLSI Symp.
2000
,
190
(
2000
).
6.
J.
Zhang
,
J. S.
Yuan
,
Y.
Ma
, and
A. S.
Oates
,
Solid-State Electron.
44
,
2165
(
2000
).
7.
J.
Sune
,
P.
Olivo
, and
B.
Ricco
,
J. Appl. Phys.
70
,
337
(
1991
).
8.
F.
Ranna
,
S.
Tiwari
, and
D. A.
Buchanan
,
Appl. Phys. Lett.
69
,
1104
(
1996
).
9.
E. M.
Vogel
,
K. Z.
Ahmed
,
B.
Hornung
,
W.
Kirklen Henson
,
P. K.
McLarty
,
G.
Lucovsky
,
J. R.
Hauser
, and
J. J.
Wortman
,
IEEE Trans. Electron Devices
45
,
1350
(
1998
).
10.
E.
Cassan
,
J. Appl. Phys.
87
,
7031
(
2000
).
11.
R. Clerc, G. Ghibaudo, and G. Pannanakis, Solid-State Electron. (in press).
12.
F.
Podevin
,
O.
Vanbésien
, and
D.
Lippens
,
J. Appl. Phys.
89
,
6247
(
2001
).
13.
E.
Lheurette
,
X.
Mélique
,
P.
Mounaix
,
F.
Mollot
,
O.
Vanbésien
, and
D.
Lippens
,
IEEE Electron Device Lett.
19
,
338
(
1998
).
14.
L.
Burgnies
,
O.
Vanbésien
,
V.
Sadaune
,
D.
Lippens
,
J.
Nagle
, and
B.
Vinter
,
J. Appl. Phys.
75
,
4527
(
1994
).
15.
P.
Mounaix
,
O.
Vanbésien
, and
D.
Lippens
,
Appl. Phys. Lett.
57
,
1517
(
1990
).
16.
Z.
Xu
,
M.
Houssa
,
S.
De Gendt
, and
M.
Heyns
,
Appl. Phys. Lett.
80
,
1975
(
2002
).
17.
M.
Houssa
,
V. V.
Afanas’ev
,
A.
Stesmans
, and
M. M.
Heyns
,
Appl. Phys. Lett.
79
,
3134
(
2001
).
18.
C. Zhao, O. Richard, E. Young, H. Bender, G. Roebben, S. Haukka, S. De Gendt, M. Houssa, R. Carter, W. Tsai, O. Van Der Biest, and M. Heyns, J. Non-Cryst. Solids (in press).
19.
G.
Lewicki
and
J.
Maserjian
,
J. Appl. Phys.
46
,
3031
(
1975
).
20.
L.
Mao
,
C.
Tan
, and
M.
Xu
,
Solid-State Electron.
44
,
1501
(
2000
).
21.
H.
Katto
,
Solid-State Electron.
45
,
101
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.