The generalized grazing-incidence-angle x-ray scattering technique has been developed for analysis of near-surface structures, namely, the anisotropy of the structure in the directions perpendicular and parallel to its surface, and its change within the depth. In this method, a specimen is irradiated by an x-ray beam with a grazing-incidence angle as small as the critical angle of the surface, and both in- and out-of-plane scattering are analyzed simultaneously. The technique has been applied to investigate the structures of InAs quantum dots grown on Si with a diameter of 37 nm and a surface coverage of 11%. It has been found that the InAs dots were dilated by 1.7% along the direction perpendicular to the surface and compressed by 1.4% in the lateral direction. The compression in the lateral direction shows a maximum value at the interface, and decreases as the distance from the interface increases. The existence of 1.7% compressive strain means that most of the 11.7% lattice mismatch between the InAs dots and the Si substrate was relaxed during the growth.

1.
W. C.
Marra
,
P.
Eisenberger
, and
A. Y.
Cho
,
J. Appl. Phys.
50
,
6927
6933
(
1979
).
2.
T. C.
Huang
,
M. F.
Toney
,
S.
Brennan
, and
Z.
Rek
,
Thin Solid Films
154
,
439
(
1987
).
3.
H. Dosch, Critical Phenomena at Surfaces and Interfaces (Springer, Berlin, 1992), Vol. 126.
4.
M. Kimura, Y. Takagai, and T. Suzuki, Photon Factory Activity Report (1998), p. 86.
5.
T.
Uragami
,
A. S.
Acosta
,
H.
Fujioka
,
T.
Mano
,
J.
Ohta
,
H.
Ofuchi
,
M.
Oshima
,
Y.
Takagi
,
M.
Kimura
, and
T.
Suzuki
,
J. Cryst. Growth
234
,
197
(
2002
).
6.
T.
Uragami
,
H.
Fujioka
,
I.
Waki
,
T.
Mano
,
K.
Ono
,
M.
Oshima
,
Y.
Takagi
,
M.
Kimura
, and
T.
Suzuki
,
Jpn. J. Appl. Phys., Part 1
39
,
4483
(
2000
).
7.
Y.
Arakawa
and
H.
Sakaki
,
Appl. Phys. Lett.
40
,
939
(
1982
).
8.
M.
Oshima
,
Y.
Watanabe
,
S.
Heum
,
M.
Sugiyama
, and
T.
Kiyokura
,
J. Electron Spectrosc. Relat. Phenom.
80
,
129
(
1996
).
9.
T.
Mano
,
H.
Fujioka
,
K.
Ono
,
Y.
Watanabe
, and
M.
Oshima
,
Appl. Surf. Sci.
130
,
760
(
1998
).
10.
K.
Kawasaki
,
Y.
Takagai
,
N.
Nose
,
H.
Morikawa
,
S.
Yamazaki
,
T.
Kikuchi
, and
S.
Sasaki
,
Rev. Sci. Instrum.
63
,
1023
(
1992
).
11.
Y.
Takagai
,
T.
Kikuchi
,
T.
Mizutani
,
M.
Imafuku
,
S.
Sasaki
, and
T.
Mori
,
Rev. Sci. Instrum.
66
,
235
(
1995
).
12.
S.
Sasaki
,
T.
Mori
,
A.
Mikuni
,
H.
Iwasaki
,
K.
Kawasaki
,
Y.
Takagai
, and
K.
Nose
,
Rev. Sci. Instrum.
63
,
1047
(
1993
).
13.
Y.
Zhuang
,
U.
Pietsh
,
J.
Stangl
,
V.
Holy
,
N.
Darowski
,
J.
Grenzer
,
S.
Zerlauth
,
F.
Schaffler
, and
G.
Bauer
,
Physica B
39
,
130
(
2000
).
14.
R.
Feidenhans’l
,
Surf. Sci. Rep.
10
,
105
(
1989
).
15.
M.
Tachikawa
and
H.
Mori
,
Appl. Phys. Lett.
56
,
2225
(
1990
).
16.
K.
Shiramine
,
Y.
Hirosaki
,
D.
Suzuki
,
S.
Itoh
,
Y.
Ebiko
,
S.
Muto
,
Y.
Nakata
, and
N.
Yokoyama
,
J. Cryst. Growth
205
,
461
(
1999
).
17.
J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy (Academic, San Diego, CA, 1992).
This content is only available via PDF.
You do not currently have access to this content.