The commonly used value of the intrinsic carrier density of crystalline silicon at 300 K is ni=1.00×1010cm−3. It was experimentally determined by Sproul and Green, J. Appl. Phys. 70, 846 (1991), using specially designed solar cells. In this article, we demonstrate that the Sproul and Green experiment was influenced by band-gap narrowing, even though the dopant density of their samples was low (1014 to 1016cm−3). We reinterpret their measurements by numerical simulations with a random-phase approximation model for band-gap narrowing, thereby obtaining ni=9.65×109cm−3 at 300 K. This value is consistent with results obtained by Misiakos and Tsamakis, J. Appl. Phys. 74, 3293 (1993), using capacitance measurements. In this way, long-prevailing inconsistencies between independent measurement techniques for the determination of ni are resolved.

1.
M. A.
Green
,
J. Appl. Phys.
67
,
2944
(
1990
).
2.
A. B.
Sproul
and
M. A.
Green
,
J. Appl. Phys.
70
,
846
(
1991
).
3.
A. B.
Sproul
and
M. A.
Green
,
J. Appl. Phys.
73
,
1214
(
1993
).
4.
A.
Schenk
,
J. Appl. Phys.
84
,
3684
(
1998
).
5.
K.
Misiakos
and
D.
Tsamakis
,
J. Appl. Phys.
74
,
3293
(
1993
).
6.
A. B. Sproul, Ph.D. thesis, University of New South Wales, Sydney, Australia, 1992.
7.
In Ref. 2, the Jsc-Voc curves were used. Reference 6 shows that the same ni was obtained from the dark I-V curves.
8.
D. B. M.
Klaassen
,
J. W.
Slotboom
, and
H. C.
de Graaff
,
Solid-State Electron.
35
,
125
(
1992
).
9.
R. R.
King
and
R. M.
Swanson
,
IEEE Trans. Electron. Devices
38
,
1399
(
1991
).
10.
J. W.
Slotboom
and
H. C.
de Graaff
,
Solid-State Electron.
19
,
857
(
1976
).
11.
S. E. Swirhun, Y. H. Kwark, and R. M. Swanson, International Electronic Devices Meeting, Los Angeles, CA (IEEE, New York, 1986), pp. 24–27.
12.
D. D.
Tang
,
IEEE Trans. Electron Devices
27
,
563
(
1980
).
13.
S. E.
Aw
,
H. S.
Tan
, and
C. K.
Ong
,
J. Phys.: Condens Matter
3
,
8213
(
1991
).
14.
M.
Balkansi
,
A.
Aziza
, and
E.
Amzallag
,
Phys. Status Solidi
31
,
323
(
1969
).
15.
P. E.
Schmid
,
Phys. Rev. B
23
,
5531
(
1981
).
16.
A. A.
Volvson
and
V. K.
Subashiev
, Fiz. Tekh. Poluprovodn (S.Peterburg) (1967) [
Semicond.
1
,
327
(
1967
)].
17.
E.
Daub
and
P.
Würfel
,
J. Appl. Phys.
80
,
5325
(
1996
).
18.
J. A.
del Alamo
,
R. M.
Swanson
, and
A.
Lietoila
,
Solid-State Electron.
26
,
483
(
1983
).
19.
H. P. D. Lanyon, A. K. McCurdy, and R. A. Tuft, Proceedings of the 13th IEEE Photovoltaic Specialists Conference, Washington, D. C. (IEEE, New York, 1978), pp. 60–65.
20.
A. Neisser, “Spectral response measurements on silicon solar cells in the range of 1 eV to 5 eV photon energy at different temperatures,” Master’s thesis, Institut für Festkörperphysik, Technical University of Berlin, 1998.
21.
J.
Wagner
and
J. A.
del Alamo
,
J. Appl. Phys.
63
,
425
(
1988
).
22.
S. W. Glunz, J. Dicker, and P. P. Altermatt, Proceedings of the 17th EU Photovoltaic Energy Conference, Munich, Germany (WIP-Renewable Energies, Munich, Germany, 2001).
23.
R. P.
Mertens
,
J. L.
van Meerbergen
,
J. F.
Nijs
, and
R. J.
van Overstraeten
,
IEEE Trans. Electron Devices
27
,
949
(
1980
).
24.
A.
Neugroschel
,
S. C.
Pao
, and
F. A.
Lindholm
,
IEEE Trans. Electron Devices
29
,
894
(
1982
).
25.
D. S.
Lee
and
J. G.
Fossum
,
IEEE Trans. Electron Devices
30
,
626
(
1983
).
26.
A.
Wieder
,
IEEE Trans. Electron Devices
27
,
1402
(
1980
).
27.
H. E. J.
Wulms
,
Solid-State Electron.
30
,
1127
(
1987
).
28.
J.
del Alamo
and
R. M.
Swanson
,
Solid-State Electron.
30
,
1127
(
1987
).
29.
G. E.
Possin
,
M. S.
Adler
, and
B. J.
Baliga
,
IEEE Trans. Electron Devices
31
,
3
(
1984
).
30.
P. P. Altermatt, “The characterization and optimization of high-efficiency silicon solar cells by means of numerical simulations,” Ph.D. thesis, University of Constance, Constance, Germany, 1997.
31.
F. A.
Lindholm
and
J. G.
Fossum
,
IEEE Electron Device Lett.
2
,
230
(
1981
).
32.
A. H.
Marshak
,
M.
Ayman-Shibib
,
J. G.
Fossum
, and
F. A.
Lindholm
,
IEEE Trans. Electron Devices
28
,
293
(
1981
).
33.
M. S.
Lundstrom
,
R. J.
Schwartz
, and
J. L.
Gray
,
Solid-State Electron.
24
,
195
(
1981
).
34.
H.
Kroemer
,
RCA Rev.
28
,
332
(
1957
).
35.
E. O.
Kane
,
Solid-State Electron.
28
,
3
(
1985
).
36.
M. II.
Cohen
,
M. Y.
Chou
,
E. N.
Ecoonomou
,
S.
Jahn
, and
C. M.
Soukoulis
,
IBM J. Res. Dev.
32
,
82
(
1988
).
37.
P. V.
Mieghem
,
Rev. Mod. Phys.
64
,
755
(
1992
).
38.
H.
Stolz
and
R.
Zimmermann
,
Phys. Status Solidi B
B94
,
135
(
1979
).
39.
R.
Zimmermann
and
H.
Stolz
,
Phys. Status Solidi B
B131
,
151
(
1985
).
40.
H. A.
Gould
and
H. E.
DeWitt
,
Phys. Rev.
155
,
68
(
1967
).
41.
F. Geelhaar, “Quasi-excition densities and band-gap narrowing in bulk silicon at room temperature,” Tech. Rep. 02/2002, Integrated Systems Laboratory, Swiss Federal Institute of Technology, Zurich, 2002.
42.
G. E.
Uhlenbeck
and
E.
Beth
,
Physica (Amsterdam)
3
,
729
(
1936
).
43.
E.
Beth
and
G. E.
Uhlenbeck
,
Physica (Amsterdam)
4
,
915
(
1937
).
44.
F. J.
Rogers
,
H. C.
Graboske
, and
D. J.
Harwood
,
Phys. Rev. A
A1
,
1577
(
1970
).
45.
F. J.
Rogers
,
Phys. Rev. A
A4
,
1145
(
1971
).
46.
R. Zimmermann, Many-Particle Theory of Highly Excited Semiconductors (BSB Teubner, Leipzig, Germany, 1988).
47.
A. B.
Sproul
,
M. A.
Green
, and
A. W.
Stephens
,
J. Appl. Phys.
72
,
4161
(
1992
).
48.
J.
Dziewior
and
D.
Silber
,
Appl. Phys. Lett.
35
,
170
(
1979
).
49.
G. W.
Ludwig
and
R. L.
Watters
,
Phys. Rev.
101
,
1699
(
1956
).
50.
A.
Neugroschel
,
IEEE Electron Device Lett.
6
,
425
(
1985
).
51.
M. B.
Prince
,
Phys. Rev.
93
,
1204
(
1954
).
52.
D. D. Tang, F. F. Fang, M. Scheuermann, T. C. Chen, and G. Sai-Halasz, “Minority carrier transport in silicon,” in International Electronic Devices Meeting, Los Angeles, CA (IEEE, New York, 1986), pp 20–23.
53.
M.
Zerbst
and
W.
Heywang
,
Z. Naturforsch. A
A11
,
608
(
1956
).
54.
W. R.
Thurber
,
R. L.
Mattis
,
Y. M.
Liu
, and
J. J.
Filiben
,
J. Electrochem. Soc.
127
,
1807
(
1980
).
55.
W. R. Thurber, R. L. Mattis, Y. M. Liu, and J. J. Filliben, “The relationship between resistivity and dopant density for phosphorous- and boron-doped silicon,” 1981. U. S. National Bureau of Standards Special Publication 400-64.
56.
P. P. Altermatt, G. Heiser, and A. Schenk, J. Appl. Phys. (submitted, 2002).
57.
P. G.
Litovchenko
,
V. S.
Lutsyak
,
I. G.
Kirnas
,
P. M.
Kurilo
, and
V. M.
Nitsovich
,
Phys. Status Solidi A
A21
,
419
(
1974
).
58.
A.
Schenk
,
J. Appl. Phys.
79
,
814
(
1996
).
59.
T.
Mchedlidze
,
K.
Matsumoto
, and
E.
Asano
,
Jpn. J. Appl. Phys. Pt. 1
38
,
3426
(
1999
).
60.
J. Michel and L. C. Kimerling, Semiconductors and Semimetals, Vol. 42, pp. 251–287, 1994.
61.
F.
Zeller
,
K.
Lassmann
, and
W.
Eisenmenger
,
Physica, B
263
,
108
(
1999
).
62.
M. D.
McCluskey
,
J. Appl. Phys.
87
,
3593
(
2000
).
63.
M.
Asche
and
O.
Sarbei
,
Phys. Status Solidi B
103
,
11
(
1981
).
64.
D. B. M.
Klaassen
,
Solid-State Electron.
35
,
953
(
1992
).
65.
S. Mueller, K. Kells, A. Benvenuti, J. Litsios, U. Krumbein, A. Schenk, and W. Fichtner, Dessis 3.0 Manual (Integrated Systems Engineering, Zu-rich, Switzerland, 1996).
66.
P. P.
Altermatt
,
G.
Heiser
,
A. G.
Aberle
,
A.
Wang
,
J.
Zhao
,
S. J.
Robinson
,
S.
Bowden
, and
M. A.
Green
,
Prog. Photovoltaics
4
,
399
(
1996
).
67.
J.
Wagner
and
J. A.
del Alamo
,
J. Appl. Phys.
63
,
425
(
1988
).
68.
A.
Cuevas
,
P. A.
Basore
,
G.
Giroult-Matlakowski
, and
C.
Dubois
,
J. Appl. Phys.
80
,
3370
(
1996
).
69.
A. Wang, “High efficiency PERL and PERC silicon solar cells,” Ph.D. thesis, University of New South Wales, Sydney, Australia, 1992.
70.
P. P.
Altermatt
,
J.
Schmidt
,
G.
Heiser
, and
A. G.
Aberle
,
J. Appl. Phys.
82
,
4938
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.