This study reports a metastable hcp→fcc polymorphic transformation in elemental titanium induced by high-energy mechanical attrition in a planetary ball mill. The transformation is monitored and verified by x-ray and electron diffraction and high-resolution transmission electron microscopy. The grain size decreases and lattice parameter increases with continued milling. The phase change is gradual and accompanied by about 16% increase in volume per atom. The milling intensity and deformation mode seem crucial for the completion of the change in crystal structure. The extent and influence of both substitutional and interstitial impurities in this transformation have been assessed. It is suggested that structural instability due to negative (from core to boundary) hydrostatic pressure arising out of nanocrystallization or grain refinement, increasing lattice expansion, and plastic strain/strain rate is responsible for this hcp→fcc polymorphic transformation in titanium. Thus, the present transformation is similar in nature and genesis to those in elemental niobium and zirconium earlier reported by us.

1.
H.
Gleiter
,
Prog. Mater. Sci.
33
,
223
(
1989
).
2.
R. W. Siegel, in Processing of Metals and Alloys, edited by R. W. Cahn, P. Haasen, and E. J. Kramer (VCH Publishers, Weinheim, 1991), Vol. 15, p. 583.
3.
C. C. Koch, in Processing of Metals and Alloys (Ref. 2), p. 193.
4.
H.-J. Fecht, in Nanomaterials: Synthesis, Properties and Applications, edited by A. Edelstein and R. Camarata (IOP, Philadelphia, 1996), p. 89.
5.
P. P.
Chattopadhyay
,
R. N. R.
Gannabattula
,
S. K.
Pabi
, and
I.
Manna
,
Scr. Mater.
45
,
1191
(
2001
).
6.
P. P.
Chatterjee
,
S. K.
Pabi
, and
I.
Manna
,
J. Appl. Phys.
86
,
5912
(
1999
).
7.
P. P.
Chattopadhyay
,
P. M. G.
Nambissan
,
S. K.
Pabi
, and
I.
Manna
,
Phys. Rev. B
63
,
054107
(
2001
).
8.
P. P.
Chatterjee
,
S. K.
Pabi
, and
I.
Manna
,
Mater. Sci. Eng., A
304–306
,
424
(
2001
).
9.
J. Y.
Huang
,
Y. K.
Wu
, and
H. Q.
Ye
,
Acta Mater.
44
,
1201
(
1996
).
10.
P.
Chatterjee
and
S. P.
Sengupta
,
Philos. Mag. A
81
,
49
(
2001
).
11.
D. L.
Zhang
and
D. Y.
Ying
,
Mater. Lett.
50
,
149
(
2001
).
12.
E.
Bonetti
,
G.
Cocco
,
S.
Enzo
, and
G.
Valdre
,
Mater. Sci. Technol.
6
,
1258
(
1990
).
13.
T.
Kado
,
Surf. Sci.
454–456
,
783
(
2000
).
14.
J. B.
Lai
,
L. J.
Chen
, and
C. S.
Liu
,
Micron
30
,
205
(
1999
).
15.
Binary Alloys Phase Diagram, 2nd ed., editor-in-chief T. B. Massalski (ASM International, Materials Park, OH, 1990), Vol. 1, p. 136.
16.
Binary Alloys Phase Diagram (Ref. 15), Vol. 1, p. 241.
17.
I. Manna, P. P. Chattopadhyay, F. Banhart, and H.-J. Fecht, Appl. Phy. Lett. (to be published).
18.
B. D. Cullity, Elements of X-Ray Diffraction (Addition-Wesley, Reading, MA, 1995).
19.
T. H.
Keijser
,
I. L.
Langford
,
E. J.
Mittemeijer
, and
B. P.
Vogel
,
J. Appl. Crystallogr.
15
,
308
(
1982
).
20.
R. B.
Schwarz
and
C. C.
Koch
,
Appl. Phys. Lett.
49
,
146
(
1986
).
21.
J. H.
Rose
,
J. R.
Smith
,
F.
Guinea
, and
J.
Ferrante
,
Phys. Rev. B
29
,
2963
(
1984
).
22.
H. J.
Fecht
,
Acta Metall. Mater.
38
,
1927
(
1990
).
23.
L. Kaufman, in Phase Stability in Metals and Alloys, edited by P. S. Rudman, J. Stringer and R. I. Jaffe (McGraw-Hill, London, 1966), p. 125.
24.
D.
van Heerden
,
D.
Josell
, and
D.
Shechtman
,
Acta Mater.
44
,
297
(
1996
).
25.
T.
Tepper
,
D.
Shechtman
,
D.
van Heerden
, and
D.
Josell
,
Mater. Lett.
33
,
181
(
1997
).
26.
Binary Alloys Phase Diagram (Ref. 15), Vol. 1, p. 888.
27.
Binary Alloys Phase Diagram (Ref. 15), Vol. 3, p. 2924.
28.
Binary Alloys Phase Diagram (Ref. 15), Vol. 3, p. 2705.
29.
Binary Alloys Phase Diagram (Ref. 15), Vol. 2, p. 2066.
30.
JCPDS File No. 32-1383.
31.
JCPDS File No. 29-1361.
32.
JCPDS File No. 38-1420.
33.
JCPDS File No. 3-859.
This content is only available via PDF.
You do not currently have access to this content.