A thermodynamic approach is used to develop a framework for modeling uranium–niobium alloys under the conditions of high-strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth, is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain rate loading and unloading as well as heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium–6 wt % niobium alloy is used in comparisons of the model and experiment.

1.
R. A. Vandermeer, D. A. Carpenter, W. G. Northcutt, and J. C. Ogle, Proceedings of the International Conference of Solid-Solid Phase Transformations, Pittsburgh, PA (TMS, Warrendale, PA, 1982).
2.
R. A.
Vandermeer
,
Acta Metall.
28
,
383
(
1980
).
3.
R. A.
Vandermeer
,
J. C.
Ogle
, and
W. G.
Northcutt
,
Metall. Trans. A
12A
,
733
(
1981
).
4.
R. A.
Vandermeer
,
J. C.
Ogle
, and
W. B.
Snyder
,
Scr. Metall.
12
,
243
(
1978
).
5.
C. M. Cady, G. T. Gray III, S. S. Hecker, D. J. Thoma, D. R. Korzekwa, R. A. Patterson, P. S. Dunn, and J. F. Bingert, in Constitutive and Damage Modeling of Inelastic Deformation and Phase Transformation, Proceedings of Plasticity ’99, edited by A. S. Kahn (NEAT Press, Fulton, MD, 1999).
6.
R. D.
Field
,
D. J.
Thoma
,
P. S.
Dunn
,
D. W.
Brown
, and
C. M.
Cady
,
Philos. Mag. A
81
,
1691
(
2001
).
7.
D. W.
Brown
,
M. A. M.
Bourke
,
P. S.
Dunn
,
R. D.
Field
,
M. G.
Stout
, and
D. J.
Thoma
,
Metall. Mater. Trans. A
32A
,
2219
(
2001
).
8.
A. Bekker and L. C. Brinson, Mechanics of Phase Transformations and Shape Memory Alloys (ASME, New York, 1994), AMD-Vol. 189 PVP-Vol. 292, p. 195.
9.
L. C.
Brinson
,
J. Intell. Mater. Syst. Struct.
4
,
229
(
1993
).
10.
S.
Govindjee
and
E. P.
Kasper
,
Comput. Methods Appl. Mech. Eng.
171
,
309
(
1999
).
11.
S.
Govindjee
and
E. P.
Kasper
,
J. Intell. Mater. Syst. Struct.
8
,
815
(
1997
).
12.
C.
Liang
and
C. A.
Rogers
,
J. Intell. Mater. Syst. Struct.
1
,
207
(
1990
).
13.
V. I.
Levitas
,
Int. J. Solids Struct.
35
,
889
(
1998
).
14.
J. Lemaitre and J. L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, New York, 1990).
15.
G. A. Maugin, The Thermomechanics of Plasticity and Fracture (Cambridge University Press, New York, 1992).
16.
J. Lubliner, Plasticity Theory (Macmillan, New York, 1990).
17.
Y. C. Fung, Foundations of Solid Mechanics (Prentice–Hall, Englewood Cliffs, NJ, 1965).
18.
M. W. Lewis and H. L. Schreyer, in High-Pressure Shock Compression of Solids II, Dynamic Fracture and Fragmentation, edited by L. Davison, D. E. Grady, and M. Shahinpoor (Springer, New York, 1996).
19.
C.
Liang
and
C. A.
Rogers
,
J. Eng. Math.
26
,
429
(
1992
).
20.
J. G.
Boyd
and
D. C.
Lagoudas
,
Int. J. Plast.
12
,
805
(
1996
).
21.
V.
Tvergaard
and
A.
Needleman
,
Int. J. Fract.
37
,
197
(
1988
).
22.
A. L.
Gurson
,
J. Eng. Mater. Technol.
99
,
2
(
1977
).
23.
J. N.
Johnson
and
F. L.
Addessio
,
J. Appl. Phys.
64
,
6699
(
1988
).
24.
J. B.
Leblond
,
G.
Mottet
,
J.
Devaux
, and
J. C.
Devaux
,
Mater. Sci. Technol.
1
,
815
(
1985
).
25.
J. B.
Leblond
,
G.
Mottet
, and
J. C.
Devaux
,
J. Mech. Phys. Solids
34
,
395
(
1986
).
26.
J. B.
Leblond
,
G.
Mottet
, and
J. C.
Devaux
,
J. Mech. Phys. Solids
34
,
411
(
1986
).
27.
A. S.
Oddy
,
J. A.
Goldak
, and
J. M. M.
McDill
,
Eur. J. Mech. A/Solids
9
,
253
(
1990
).
28.
Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967), Vol. II.
29.
L. E. Malvern, Introduction to the Mechanics of a Continuous Medium (Prentice–Hall, Englewood Cliffs, NJ, 1969).
30.
A. C. Eringen, Nonlinear Theory of Continuous Media (McGraw–Hill, New York, 1962).
31.
D. P.
Flanagan
and
L. M.
Taylor
,
Comput. Methods Appl. Mech. Eng.
62
,
305
(
1987
).
32.
G. R.
Johnson
and
W. H.
Cook
,
Eng. Fract. Mech.
21
,
31
(
1985
).
33.
J. C. Simo and T. J. R. Hughes, Computational Inelasticity (Springer, New York, 1997).
34.
N.
Aravas
,
Int. J. Numer. Methods Eng.
24
,
1395
(
1987
).
35.
F. L. Addessio, Q. H. Zuo, T. A. Mason, and L. C. Brinson, Rep. No. LA-UR-02-3498, Los Alamos National Laboratory (2002).
36.
G. R. Johnson and T. J. Holmquist, Rep. No. LA-11463-MS, Los Alamos National Laboratory (1989).
37.
R. L. Jackson, Rep. No. RFP-1613, The Dow Chemical Company, Rocky Flats Division, Golden, CO (1971).
38.
K. H.
Ecklemeyer
,
A. D.
Romig
, and
L. J.
Weirick
,
Metall. Trans. A
15A
,
1319
(
1984
).
39.
R. J.
Jackson
and
D. V.
Miley
,
Trans. ASM
61
,
336
(
1968
).
40.
D. R.
Lowry
,
A.
Wolfenden
, and
G. M.
Ludtka
,
J. Appl. Mech.
57
,
292
(
1990
).
41.
R. J. Jackson, in The Physical Metallurgy of Uranium Alloys, edited by J. J. Burke (Brookhill, Chestnut Hill, MA, 1976), p. 611.
42.
P. S.
Follansbee
and
U. F.
Kocks
,
Acta Metall.
30
,
81
(
1988
).
43.
D. L. Tonks, J. E. Vorthman, R. S. Hixson, A. Kelly, and A. K. Zurek, in Shock Compression of Condensed Matter–1999, edited by M. D. Furnish, L. C. Chhabildas, and R. S. Hixson (AIP, New York, 1999).
44.
R. S. Hixson, J. E. Vorthman, A. K. Zurek, W. W. Anderson, and D. L. Tonks, in Ref. 43.
45.
J.
Wackerle
,
J. Appl. Phys.
33
,
922
(
1962
).
46.
G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, MA, 1971).
47.
S. C.
Jones
and
Y. M.
Gupta
,
J. Appl. Phys.
88
,
5671
(
2000
).
48.
W. M. Rohsenow and J. P. Hartnett, Handbook of Heat Transfer (McGraw–Hill, New York, 1973).
49.
F. L.
Addessio
and
J. N.
Johnson
,
J. Appl. Phys.
74
,
1640
(
1993
).
50.
K.
Kadau
,
T. C.
Germann
,
P. S.
Lomdahl
, and
B. L.
Holian
,
Science (Washington, DC, U.S.)
296
,
1681
(
2002
).
51.
A. Saxena, T. Lookman, and A. R. Bishop, Rep. No. LAUR-99-336, Los Alamos National Laboratory (1999).
52.
X. J.
Gao
,
M. S.
Huang
, and
L. C.
Brinson
,
Int. J. Plast.
16
,
1345
(
2000
).
53.
M. S.
Huang
,
X. J.
Gao
, and
L. C.
Brinson
,
Int. J. Plast.
16
,
1371
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.