Microwave plasmas sustained at atmospheric pressure, for instance by electromagnetic surface waves, can be efficiently used to abate greenhouse-effect gases such as perfluorinated compounds. As a working example, we study the destruction and removal efficiency (DRE) of SF6 at concentrations ranging from 0.1% to 2.4% of the total gas flow where N2, utilized as a purge gas, is the carrier gas. O2 is added to the mixture at a fixed ratio of 1.2–1.5 times the concentration of SF6 to ensure full oxidation of the SF6 fragments, providing thereby scrubbable by-products. Fourier-transform infrared spectroscopy has been utilized for identification of the by-products and quantification of the residual concentration of SF6. Optical emission spectroscopy was employed to determine the gas temperature of the nitrogen plasma. In terms of operating parameters, the DRE is found to increase with increasing microwave power and decrease with increasing gas flow rate and discharge tube radius. Increasing the microwave power, in the case of a surface-wave discharge, or decreasing the gas flow rate increases the residence time of the molecules to be processed, hence, the observed DRE increase. In contrast, increasing the tube radius or the gas-flow rate increases the degree of radial contraction of the discharge and, therefore, the plasma-free space close to the tube wall: this comparatively colder region favors the reformation of the fragmented SF6 molecules, and enlarging it lowers the destruction rate. DRE values higher than 95% have been achieved at a microwave power of 6 kW with 2.4% SF6 in N2 flow rates up to 30 standard l/min.

1.
Climate Change 1995, The Science of Climate Change, edited by J. T. Houghton, L. G. Meira Filho, B. A. Callander, and N. Harris (Cambridge University Press, New York, 1996).
2.
SF6 is used in many industries, namely for aluminum and magnesium production, electricity distribution (high-voltage switching gears and underground cables) and semiconductor manufacturing and, as such, constitutes a major source of PFC emission. Although, SF6 lifetime (3200 y) in the atmosphere is shorter than that of CF4 (50 000 y), its global warming potential is much greater.
3.
http://unfccc.int/resource.
4.
J. D.
Williams
,
Mater. Res. Soc. Symp. Proc.
447
,
43
(
1997
).
5.
S.
Raoux
et al.,
J. Vac. Sci. Technol. B
17
,
477
(
1999
).
6.
A. M.
Pierce
and
J.
Van Gompel
,
Mater. Res. Soc. Symp. Proc.
447
,
49
(
1997
).
7.
R. Jewett, Future Fab International, Issue 12, March 2002, pp. 77–81.
8.
C. L.
Hartz
,
J. W.
Bevan
,
M. W.
Jackson
, and
B. A.
Wofford
,
Environ. Sci. Technol.
32
,
682
(
1998
).
9.
B. A.
Wofford
,
M. W.
Jackson
,
C.
Hartz
, and
J. W.
Bevan
,
Environ. Sci. Technol.
33
,
1892
(
1999
).
10.
V.
Mohindra
,
H.
Chae
,
H. H.
Sawin
, and
M. T.
Mocella
,
IEEE Trans. Semicond. Manuf.
10
,
399
(
1997
).
11.
E.
Tonnis
,
D.
Graves
,
V.
Vartanian
,
R.
Jewett
,
L.
Beu
, and
T.
Lii
,
J. Vac. Sci. Technol. A
18
,
393
(
2000
).
12.
A.
Fiala
,
S.
Mahnovski
,
M. W.
Kiehlbauch
, and
D. B.
Graves
,
J. Appl. Phys.
86
,
152
(
1999
).
13.
M. W.
Kiehlbauch
and
D. B.
Graves
,
J. Appl. Phys.
86
,
2047
(
2001
).
14.
X. P.
Xu
,
S.
Rauf
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
18
,
213
(
2000
).
15.
M. Y.
Liao
,
K.
Wong
,
J. P.
McVittie
, and
K.
Saraswat
,
J. Vac. Sci. Technol. B
17
,
2638
(
1999
).
16.
M. Moisan, Y. Kabouzi, D. Kéroack, J. C. Rostaing, and D. Guérin, in 13th International Colloquium on Plasma Processes (CIP’01), Le Vide: Science, Technique et Applications (SFV, Paris, 2001) pp. 133–136.
17.
J. C. Rostaing, D. Guérin, C. Larquet, C. H. Ly, M. Moisan, and H. Dulphy, SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West 2001, pp. 165–179.
18.
L. Fabian, Future Fab International, Issue 12, March 2002, pp. 61–64.
19.
E. Pfender, Gaseous Electronics (Academic, New York, 1978), Vol. 1, Chap. 5.
20.
A. A.
Fridman
,
A.
Petrousov
,
J.
Chapelle
,
J. M.
Cormier
,
A.
Czernichowski
,
H.
Lesureur
, and
J.
Stevefelt
,
J. Phys. III
4
,
1449
(
1994
).
21.
M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications (Plenum, New York, 1994).
22.
U.
Kogelschatz
,
B.
Eliasson
, and
W.
Egli
,
Pure Appl. Chem.
71
,
1819
(
1999
).
23.
B.
Eliasson
and
U.
Kogelschatz
,
IEEE Trans. Plasma Sci.
19
,
1063
(
1991
).
24.
B. M.
Penetrante
et al.,
Appl. Phys. Lett.
68
,
3719
(
1996
).
25.
J. S.
Chang
,
P. A.
Lawless
, and
T.
Yamamoto
,
IEEE Trans. Plasma Sci.
19
,
1152
(
1991
).
26.
Y.
Kabouzi
,
M. D.
Calzada
,
M.
Moisan
,
K. C.
Tran
, and
C.
Trassy
,
J. Appl. Phys.
91
,
1008
(
2002
).
27.
M. D.
Calzada
,
M.
Moisan
,
A.
Gamero
, and
A.
Sola
,
J. Appl. Phys.
80
,
46
(
1996
).
28.
M.
Baeva
,
H.
Gier
,
A.
Pott
,
J.
Uhlenbusch
,
J.
Höschele
, and
J.
Steinwandel
,
Plasma Chem. Plasma Process.
21
,
225
(
2001
).
29.
B.
Eliasson
and
U.
Kogelschatz
,
Pure Appl. Chem.
66
,
1275
(
1994
).
30.
B. M.
Penetrante
,
M. C.
Hsiao
,
B. T.
Merritt
,
G. E.
Vogtlin
, and
P. H.
Wallman
,
IEEE Trans. Plasma Sci.
23
,
679
(
1995
).
31.
P. Labrune and J. C. Rostaing, in EurOdeur AirOdeur 99, Actes de Conférences, Séminaire Technologies Émergentes, 17–18 June 1999, Paris, under the auspices of AWMA.
32.
R.
McAdams
,
J. Phys. D
34
,
2810
(
2001
).
33.
M. G. Grothaus et al., Proceedings of the Tenth IEEE International Pulsed Power Conference, 1995, Vol. 1, p. 24.
34.
J.
Tang
,
T.
Zhang
,
A.
Wang
,
L.
Ren
,
H.
Yang
,
L.
Ma
, and
L.
Lin
,
Chem. Lett.
30
,
140
(
2001
).
35.
N.
Djermanova
,
D.
Grozev
,
K.
Kirov
,
K.
Makasheva
,
A.
Shivarova
, and
T.
Tsvetkov
,
J. Appl. Phys.
86
,
373
(
1999
).
36.
B. Pateyron, M. F. Elchinger, G. Delluc, and J. Auberton, ADEP-Banque de données de l’Université et du CNRS, édition Direction des Bibliothèques des Musées et de l’Information Scientifique et Technique, 1986.
37.
M.
Moisan
and
Z.
Zakrzewski
,
J. Phys. D
24
,
1025
(
1991
).
38.
M. Moisan, R. Etemadi, and J. C. Rostaing, Dispositif d’excitation d’un gaz par plasma d’onde de surface et installation de traitement de gaz incorporant un tel dispositif, French patent 2 762 748 (1998),
European patent, EP 0 874 537 A1.
39.
C.
Kenty
,
Phys. Rev.
126
,
1235
(
1962
).
40.
J. T.
Massey
and
S. M.
Cannon
,
J. Appl. Phys.
36
,
361
(
1965
).
41.
J. T.
Massey
,
J. Appl. Phys.
36
,
373
(
1965
).
42.
G. M.
Petrov
and
C. M.
Ferreira
,
Phys. Rev. E
59
,
3571
(
1999
).
43.
V. Y.
Baranov
and
K. N.
Ul’yanov
,
Zh. Tekh. Fiz.
39
,
249
(
1969
)
V. Y.
Baranov
and
K. N.
Ul’yanov
, [
Sov. Phys. Tech. Phys.
14
,
176
(
1969
);
V. Y.
Baranov
and
K. N.
Ul’yanov
,
Sov. Phys. Tech. Phys.
39
,
259
(
1969
);
V. Y.
Baranov
and
K. N.
Ul’yanov
,
Sov. Phys. Tech. Phys.
14
,
183
(
1969
)].
44.
Y. B.
Golubovskii
,
A. K.
Zinchenko
, and
Y. M.
Kagan
,
Zh. Tekh. Fiz.
47
,
1478
(
1977
)
Y. B.
Golubovskii
,
A. K.
Zinchenko
, and
Y. M.
Kagan
, [
Sov. Phys. Tech. Phys.
22
,
851
(
1977
)].
45.
Y. B.
Golubovskii
and
R.
Sonneburg
,
Zh. Tekh. Fiz.
49
,
295
(
1979
)
Y. B.
Golubovskii
and
R.
Sonneburg
, [
Sov. Phys. Tech. Phys.
24
,
173
(
1979
)].
46.
G. L.
Rogoff
,
Phys. Fluids
15
,
1931
(
1972
).
47.
D. B.
Ogle
and
G. A.
Woolsey
,
J. Phys. D
20
,
453
(
1987
).
48.
K. M.
Green
,
M. C.
Borrás
,
P. P.
Woskov
,
G. J.
Flores
,
K.
Hadidi
, and
P.
Thomas
,
IEEE Trans. Plasma Sci.
29
,
399
(
2001
).
49.
G. H.
Dieke
and
H. M.
Crosswhite
,
J. Quant. Spectrosc. Radiat. Transf.
2
,
97
(
1962
).
50.
M. H.
Abdellah
and
J. M.
Mermet
,
Spectrochim. Acta, Part B
37
,
391
(
1981
).
51.
V. D.
Coster
and
H. H.
Brons
,
Z. Phys.
73
,
747
(
1932
).
52.
M. Moisan and J. Pelletier, Microwave Excited Plasmas (Elsevier, New York, 1992).
53.
L.
Vial
,
A. M.
Casanovas
,
J.
Diaz
,
I.
Coll
, and
J.
Casanovas
,
J. Phys. D
34
,
2037
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.