Optical absorption, luminescence spectra and upconversion of both red to green and infrared to green luminescence have been studied for a Ho3+ doped zinc tellurite glass of composition 19ZnO−80TeO2−1Ho2O3. From the absorption data, Judd–Ofelt parameters for the Ho3+ ion are calculated along with the radiative transition rates, branching ratios and radiative lifetimes of the major Ho3+ emitting levels. The upconversion luminescence for both 646 and 754 nm excitation was attributed to a two photon excited state absorption upconversion mechanism that occurs via the I75 level. For an excitation power density of 610 W/cm2 an upconversion efficiency of 1.22% was determined for the case of 646 nm excitation, which is considerably higher than what has been reported in Ho3+ doped fluoride single crystals. Under 754 nm excitation, an upconversion efficiency of 0.27% was observed for a excitation power density of 610 W/cm2, which is reasonably low compared to other Ho3+ doped materials.

1.
F. E.
Auzel
,
Proc. IEEE
6
,
758
(
1973
).
2.
S.
Kück
and
I.
Sokolska
,
Chem. Phys. Lett.
325
,
257
(
2000
).
3.
M.
Malinowski
,
A.
Wnuk
,
Z.
Frukacz
,
G.
Chadeyron
,
R.
Mahiou
,
S.
Guy
, and
M. F.
Joubert
,
J. Alloys Compd.
323–324
,
721
(
2001
).
4.
J. Y.
Allain
,
M.
Monerie
, and
H.
Poignant
,
Electron. Lett.
26
,
261
(
1990
).
5.
D. S.
Funk
and
J. G.
Eden
,
IEEE J. Sel. Top. Quantum Electron.
1
,
784
(
1995
).
6.
D. S.
Funk
,
S. B.
Stevens
,
S. S.
Wu
, and
J. G.
Eden
,
IEEE J. Quantum Electron.
32
,
638
(
1996
).
7.
D. S.
Funk
,
J. G.
Eden
,
J. S.
Osinski
, and
B.
Lu
,
Electron. Lett.
33
,
1958
(
1997
).
8.
D. S.
Funk
and
G. J.
Eden
,
IEEE J. Quantum Electron.
37
,
980
(
2001
).
9.
S.
Tanabe
,
T.
Kouda
, and
T.
Hanada
,
J. Non-Cryst. Solids
274
,
55
(
2000
).
10.
J. S.
Wang
,
E. M.
Vogel
, and
E.
Snitzer
,
Opt. Mater.
3
,
187
(
1994
).
11.
Z.
Pan
,
S. H.
Morgan
,
K.
Dyer
,
A.
Ueda
, and
H.
Liu
,
J. Appl. Phys.
79
,
8906
(
1996
).
12.
N.
Jaba
,
A.
Kanoun
,
H.
Mejri
,
A.
Selmi
,
S.
Alaya
, and
H.
Maaref
,
J. Phys.: Condens. Matter
12
,
4523
(
2000
).
13.
K.
Hirao
,
S.
Kishimoto
,
K.
Tanaka
,
S.
Tanabe
, and
N.
Soga
,
J. Non-Cryst. Solids
139
,
151
(
1992
).
14.
H.-P.
Ho
,
W.-W.
Wong
,
S.-Y.
Wu
,
K.-C.
Lo
,
Y.
Chan
,
W.-W.
Lam
, and
E. E. Y.
Pun
,
Jpn. J. Appl. Phys., Part 2
41
,
L641
(
2002
).
15.
R.
Rolli
,
K.
Gatterer
,
M.
Wachtler
,
M.
Bettinelli
,
A.
Speghini
, and
D.
Ajò
,
Spectrochim. Acta, Part A
57
,
2009
(
2001
).
16.
F.
Vetrone
,
J.-C.
Boyer
,
J. A.
Capobianco
,
A.
Speghini
, and
M.
Bettinelli
,
Appl. Phys. Lett.
80
,
1752
(
2002
).
17.
W. T.
Carnall
,
P. R.
Fields
, and
K.
Rajnak
,
J. Chem. Phys.
49
,
4424
(
1968
).
18.
N.
Mochida
,
K.
Takahashi
,
K.
Nakata
, and
S.
Shibusawa
,
J. Ceram. Soc. Jpn.
86
,
317
(
1978
).
19.
S.
Zaccaria
,
M.
Casarin
,
A.
Speghini
,
D.
Ajò
, and
M.
Bettinelli
,
Spectrochim. Acta, Part A
55
,
171
(
1999
).
20.
R.
Reisfeld
and
J.
Hormadaly
,
J. Chem. Phys.
64
,
3207
(
1976
).
21.
R.
Reisfeld
and
Y.
Kalisky
,
Chem. Phys. Lett.
75
,
443
(
1980
).
22.
M. D.
Shinn
,
W. A.
Sibley
,
M. G.
Drexhage
, and
R. N.
Brown
,
Phys. Rev. B
27
,
6635
(
1983
).
23.
M.
Shojiya
,
Y.
Kawamoto
, and
K.
Kadona
,
J. Appl. Phys.
89
,
4944
(
2001
).
24.
J. M. F.
van Dijk
and
M. F. H.
Schuurmans
,
J. Chem. Phys.
78
,
5317
(
1983
).
25.
M. A.
Chamarro
and
R.
Cases
,
J. Lumin.
46
,
59
(
1990
).
26.
S. R.
Bullock
,
B. R.
Reddy
,
P.
Venkateswarlu
, and
S. K.
Nash-Stevenson
,
J. Opt. Soc. Am. B
14
,
553
(
1997
).
27.
R. S.
Quimby
,
M. G.
Drexhage
, and
M. J.
Suscavage
,
Electron. Lett.
23
,
32
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.