Following the recent finding that luster decorations in glazes of historical pottery consist of copper and silver nanoparticles dispersed in a glassy medium, the glaze in-depth composition and distribution of copper nanoparticles, copper ions, and their local environment have been studied in original samples of gold and red luster. The study has been fully carried out by nondestructive techniques such as Rutherford backscattering spectrometry, ultraviolet and visible spectroscopy, x-ray fluorescence, and extended x-ray absorption fine structure (EXAFS). Elemental analyses indicate that gold decorations are characterized by silver and copper, while red decorations by copper only. The color is determined mainly by metal nanoparticles. Specifically, silver nanoparticles determine the gold color, while the red color is determined by nanoparticles of copper. EXAFS measurements, carried out at the Cu K edge, indicate that in both gold and red luster copper is mostly the oxidized form (Cu+andCu2+) with a large prevalence of Cu+. States and local environment of copper ions are similar to those found in copper–alkali ion-exchanged silicate glass samples. This strongly supports the view that luster formation is mediated by a copper– and silver–alkali ion exchange as a first step, followed by nucleation and growth of metal nanoparticles.

1.
F. Gonella and P. Mazzoldi, in Handbook of Nanostructured Materials and Nanotechnology, Vol. 4, edited by H. S. Nalwa (Academic, San Diego, 2000), pp. 81–158.
2.
U. Kreibig and M. Vollmer, Optical Properties of Metal Cluster (Springer, Berlin, 1995).
3.
J.
Pérez-Arantegui
et al.,
J. Am. Ceram. Soc.
84
,
442
(
2001
).
4.
I.
Borgia
,
B.
Brunetti
,
I.
Mariani
,
A.
Sgamellotti
,
F.
Cariati
,
P.
Fermo
,
M.
Mellini
, and
C.
Viti
,
Appl. Surf. Sci.
185
,
206
(
2002
).
5.
A. Caiger-Smith, Luster Pottery. Technique, Tradition and Innovation in Islam and the Western World (Faber & Faber, London, UK, 1985).
6.
C. Piccolpasso, I Tre Libri dell’Arte del Vasaio, 1557 (Edizioni all’Insegna del Giglio, Firenze, Italy, 1976).
7.
F.
Garrido
,
F.
Caccavale
,
F.
Gonella
, and
A.
Quaranta
,
Pure Appl. Opt.
4
,
771
(
1995
).
8.
G.
De
,
G.
Mattei
,
P.
Mazzoldi
,
C.
Sada
,
G.
Battaglin
, and
A.
Quaranta
,
Chem. Mater.
12
,
2157
(
2000
).
9.
S.
Padovani
et al.,
Eur. Phys. J. B
25
,
11
(
2002
).
10.
F.
Gonella
,
G.
Mattei
,
P.
Mazzoldi
,
C.
Sada
,
G.
Battaglin
, and
E.
Cattaruzza
,
Appl. Phys. Lett.
75
,
55
(
1999
).
11.
G.
Mie
,
Ann. Phys. (Leipzig)
25
,
377
(
1908
).
12.
C. R. Bamford, Color Generation and Control in Glass (Elsevier, Amsterdam, The Netherlands, 1977).
13.
S.
Pascarelli
,
F.
Boscherini
,
F.
D’Acapito
,
J.
Hardy
,
C.
Meneghini
, and
S.
Mobilio
,
J. Synchrotron Radiat.
3
,
147
(
1996
).
14.
A. L.
Ankudinov
,
B.
Ravel
,
J. J.
Rehr
, and
S. D.
Conradson
,
Phys. Rev. B
58
,
7565
(
1998
).
15.
G.
Battaglin
et al.,
Nucl. Instrum. Methods Phys. Res. B
175–177
,
410
(
2001
).
16.
J. C.
Maxwell-Garnett
,
Philos. Trans. R. Soc. London, Ser. A
203
,
385
(
1904
).
17.
J. C.
Maxwell-Garnett
,
Philos. Trans. R. Soc. London, Ser. A
205
,
385
(
1906
).
18.
F.
D’Acapito
,
S.
Mobilio
,
G.
Battaglin
,
E.
Cattaruzza
,
F.
Gonella
,
F.
Caccavale
,
P.
Mazzoldi
, and
J.
Regnard
,
J. Appl. Phys.
87
,
1819
(
2000
).
19.
F.
Gonella
et al.,
J. Non-Cryst. Solids
280
,
241
(
2001
).
20.
F.
D’Acapito
,
S.
Mobilio
,
J. R.
Regnard
,
E.
Cattaruzza
,
F.
Gonella
, and
P.
Mazzoldi
,
J. Non-Cryst. Solids
232–234
,
364
(
1998
).
21.
P. A.
Montano
,
G. K.
Shenoy
,
E. E.
Alp
,
W.
Schulze
, and
J.
Urban
,
Phys. Rev. Lett.
56
,
2076
(
1986
).
22.
R. Bertoncello and A. Giulivi (unpublished results).
23.
R. H.
Magruder
III
,
D. H.
Osborne
Jr.
, and
R. A.
Zuhr
,
J. Non-Cryst. Solids
176
,
299
(
1994
).
24.
G.
De
,
M.
Catalano
,
G.
Battaglin
,
F.
Caccavale
,
F.
Gonella
,
P.
Mazzoldi
, and
R. F.
Haglund
,
Appl. Phys. Lett.
68
,
3820
(
1996
).
25.
A.
Miotello
,
G.
De Marchi
,
G.
Mattei
,
P.
Mazzoldi
, and
A.
Quaranta
,
Appl. Phys. A: Mater. Sci. Process.
67
,
527
(
1998
);
A.
Miotello
,
G.
De Marchi
,
G.
Mattei
,
P.
Mazzoldi
, and
A.
Quaranta
,
Appl. Phys. A: Mater. Sci. Process.
70
,
415
(
2000
).
26.
F.
Gonella
,
Appl. Phys. Lett.
69
,
314
(
1996
).
27.
F.
Gonella
,
F.
Caccavale
,
L. D.
Bogomolova
,
F.
D’Acapito
, and
A.
Quaranta
,
J. Appl. Phys.
83
,
1200
(
1998
).
28.
F.
D’Acapito
,
S.
Colonna
,
S.
Mobilio
,
F.
Gonella
,
E.
Cattaruzza
, and
P.
Mazzoldi
,
Appl. Phys. Lett.
71
,
2611
(
1997
).
29.
E.
Borsella
,
E.
Cattaruzza
,
G.
De Marchi
,
F.
Gonella
,
G.
Mattei
,
P.
Mazzoldi
,
A.
Quaranta
,
G.
Battaglin
, and
R.
Polloni
,
J. Non-Cryst. Solids
245
,
122
(
1999
).
30.
F.
Gonella
,
Nucl. Instrum. Methods Phys. Res. B
166–167
,
831
(
2000
).
31.
G.
De
,
M.
Gusso
,
L.
Tapfer
,
M.
Catalano
,
F.
Gonella
,
G.
Mattei
,
P.
Mazzoldi
, and
G.
Battaglin
,
J. Appl. Phys.
80
,
6734
(
1996
).
32.
S.
Sakka
,
K.
Kamiya
, and
K.
Kato
,
J. Non-Cryst. Solids
52
,
77
(
1982
).
33.
S. N.
Houde-Walter
,
J. M.
Inman
,
A. J.
Dent
, and
G. N.
Greaves
,
J. Phys. Chem.
97
,
9330
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.