Experiments are reported in which two configurations for ablation-plasma-ion-implantation (APII) are characterized by diagnostics and compared. The first configuration oriented the target parallel to the deposition substrate. This orientation yielded ion-beam-assisted deposition of thin films. A delay (>5 μs) between laser and high voltage was necessary for this geometry to avoid arcing between negatively biased substrate and target. The second experimental configuration oriented the target perpendicular to the deposition substrate, reducing arcing, even for zero/negative delay between the laser and the high voltage pulse. This orientation also reduced neutral atom, ballistic deposition on the substrate resulting in a pure ion implantation mode. Ion density measurements were made by resonant laser diagnostics and Langmuir probes, yielding total ion populations in the range of 1014. Implanted ion doses were estimated by electrical diagnostics, and materials analysis, including x-ray energy dispersive spectroscopy and x-ray photoelectron spectroscopy, yielding implanted doses in the range 1012ions/cm2per pulse. This yields an APII efficiency of order 10% for implantation of laser ablated ions. Scaling of ion dose with voltage agrees well with a theory assuming the Child–Langmuir law and that the ion current at the sheath edge is due to the uncovering of the ions by the movement of the sheath. Thin film analysis showed excellent adhesion with smoother films for an accelerating voltage of −3.2 kV; higher voltages (−7.7 kV) roughened the film.

1.
J. R.
Conrad
,
J. L
Radtke
,
R. A.
Dodd
,
J.
Worzala
, and
N. C.
Tran
,
J. Appl. Phys.
62
,
4591
(
1987
).
2.
J. R. Conrad, U.S. Patent No. 4764394 (1988).
3.
J. T.
Sheuer
,
M.
Shamim
, and
J. R.
Conrad
,
J. Appl. Phys.
67
,
1241
(
1990
).
4.
R. P. Fetherston, M. M. Shamim, and J. R. Conrad, U.S. Patent No. 5693376 (1997).
5.
Handbook of Plasma Immersion Ion Implantation, edited by A. Anders (Wiley, New York, 2000).
6.
Y. X.
Leng
et al.,
Thin Solid Films
398 – 399
,
471
(
2001
).
7.
S.
Qin
,
N.
McGruer
,
C.
Chan
, and
K.
Warner
,
IEEE Trans. Electron Devices
39
,
2354
(
1992
).
8.
B. P.
Wood
,
I.
Henins
,
D. J.
Rej
,
H. A.
Davis
,
W.
Waganaar
,
R. E.
Muenchausen
,
G. P.
Johnson
, and
H. K.
Schmidt
,
Nucl. Instrum. Methods Phys. Res. B
96
,
429
(
1995
).
9.
I. G.
Brown
,
Rev. Sci. Instrum.
65
,
3062
(
1994
).
10.
B. Qi, Ph.D. dissertation, University of Michigan, 2002
11.
B.
Qi
,
R. M.
Gilgenbach
,
Y. Y.
Lau
,
M. D.
Johnston
,
J.
Lian
,
L. M.
Wang
,
G. L.
Doll
, and
A.
Lazarides
,
Appl. Phys. Lett.
78
,
3785
(
2001
).
12.
B.
Qi
,
Y. Y.
Lau
, and
R. M.
Gilgenbach
,
Appl. Phys. Lett.
78
,
706
(
2001
).
13.
R. M.
Gilgenbach
,
C. H.
Ching
,
J. S.
Lash
, and
R. A.
Lindley
,
Phys. Plasmas
1
,
1619
(
1994
).
14.
R. A.
Lindley
,
R. M.
Gilgenbach
,
C. H.
Ching
,
J. S.
Lash
, and
G. L.
Doll
,
J. Appl. Phys.
76
,
5457
(
1994
).
15.
H.
Spindler
,
R. M.
Gilgenbach
, and
J. S.
Lash
,
Appl. Phys. Lett.
68
,
3245
(
1996
).
16.
M. A.
Lieberman
,
J. Appl. Phys.
66
,
2926
(
1989
).
17.
K.-U.
Riemann
,
J. Phys. D
24
,
493
(
1991
).
18.
N. Hershkowitz, L. Oksuz, A. M. Hala, and M. A. Khedr, IEEE International Conference on Plasma Science, June 4–7, 2000, New Orleans, LA, p. 227.
19.
S.
Masamune
, and
K.
Yukimura
,
Rev. Sci. Instrum.
71
,
1187
(
2000
).
20.
W. G.
En
,
M. A.
Lieberman
, and
N. W.
Cheung
,
IEEE Trans. Plasma Sci.
23
,
415
(
1995
).
21.
M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).
This content is only available via PDF.
You do not currently have access to this content.