Plasma charge current distribution during deep penetration CO2 laser welding was analyzed theoretically and experimentally. The laser-induced plasma above the workpiece surface expands up to the nozzle, driven by the particle concentration gradient, forming an electric potential between the workpiece and the nozzle due to the large difference between the diffusion velocities of the ions and the electrons. The plasma-induced current obtained by electrically connecting the nozzle and the workpiece can be increased by adding a negative external voltage. For a fixed set of welding conditions, the plasma charge current increases with the external voltage to a saturation value. The plasma charge current decreases as the nozzle-to-workpiece distance increases. Therefore, closed-loop control of the nozzle-to-workpiece distance for laser welding can be based on the linear relationship between the plasma charge current and the distance. In addition, the amount of plasma above the keyhole can be reduced by a transverse magnetic field, which reduces the attenuation of the incident laser power by the plasma so as to increase the laser welding thermal efficiency.

1.
B.
Seidel
,
J.
Beersiek
,
E.
Beyer
,
Proc. SPIE
2207
,
290
(
1994
).
2.
E. W. Kreutz, Proceedings of the 4th Conference in Laser Manufacturing, May 1987, pp. 263–278.
3.
R. D. Dixon, G. K. Lewis, ICALEO’83, 1983, pp. 44–50.
4.
A. Matsunawa, ICALEO’90, 1990, pp. 313–324.
5.
Y. Arata, Development of Ultra High Energy Density Heat Source and It’s Application to Heat Processing (Okada Memorial, Japan Society, 1986), pp. 460–467.
6.
S. Chiang and C. E. Albright, ICALEO’92, 1992, pp. 491–522.
7.
I.
Miyamoto
,
Proc. SPIE
668
,
11
(
1986
).
8.
N. F. F. Willmott, R. Hibberd, and W. M. Steen, ICALEO’88, 1988, pp. 109–118.
9.
A. Poueye and L. Sabatier, LAMP’92, 1992, pp. 323–328.
10.
E. Beyer et al., ICALEO’87, 1987, pp. 17–23.
11.
L. Li, N. Qi, D. J. Brookfield, and W. M. Steen, ICALEO’90, 1990, pp. 411–421.
12.
L. Li, D. J. Brookfield, and W. M. Steen, Proc. IIW Asia-Pacific Welding Congress, 1996, pp. 91–108.
13.
L.
Li
,
N.
Qi
,
D. J.
Brookfield
, and
W. M.
Steen
,
Meas. Sci. Technol.
7
,
15
(
1996
).
14.
E.
Beyer
,
L.
Bokowsky
, and
P.
Loosen
,
Proc. SPIE
455
,
75
(
1983
).
15.
Y.
Wang
et al.,
Proc. SPIE
2703
,
184
(
1996
).
16.
W. Z.
Chen
et al.,
Proc. SPIE
3550
,
287
(
1998
).
17.
Y. Arata, N. Abe, and T. Oda, ICALEO’83, 1983, pp. 59–66.
18.
T. D. Mccay, M. H. Mccay, and C. M. Sharp, ICALEO’92, 1992, pp. 365–382.
19.
M. I. Boulos, P. Fauchis, and E. Pfender, Thermal Plasma: Fundamental and Applications (Plenum, New York, 1994), Vol. 1.
20.
X. D.
Zhang
and
W. Z.
Chen
, and
J.
Ren
,
China Welding
6
,
61
(
1997
).
21.
X. D.
Zhang
,
W.
Chen
, and
J. L.
Ren
,
Proc. SPIE
2888
,
306
(
1996
).
22.
Y.
Peng
et al.,
J. Phys. D
34
,
3145
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.