Sulfur incorporated nanocrystalline carbon (n-C:S) thin films were grown on molybdenum substrates by a hot-filament chemical vapor deposition technique using gas mixtures of methane, hydrogen, and a range of hydrogen sulfide (H2S) concentrations (100–500 ppm with an interval of 100 ppm) at a fixed substrate temperature of 900 °C. They were optically characterized using Raman spectroscopy (RS) and ex situ spectroscopic phase modulated ellipsometry from near-infrared to near UV (1.5–5.0 eV) obtaining their vibrational frequencies and pseudodielectric function, respectively, as a function of [H2S]. The ellipsometry data [〈εr(E)〉,〈εi(E)〉] were modeled using Bruggeman effective-medium theory and dispersion relations for the amorphous semiconductors: Forouhi and Bloomer (FB) parameterization model. A simplified two-layer model consisting of a top layer comprising an aggregate mixture of sp3C+sp2C+void and a bulk layer (L2), defined as a dense amorphized FB-modeled material, was found to simulate the data reasonably well. Through these simulations, it was possible to estimate the dielectric function of our n-C:S material, along with the optical band gap (Eg), film thickness (d), void fraction (fv), and roughness layer (σ) as a function of H2S concentration. The physical interpretation of the five modeling parameters obtained in the amorphous dispersion model applied to the case of n-C:S thin films is discussed. The Raman and ellipsometry results indicate that the average size of nanocrystallites in the sulfur-incorporated carbon thin films becomes smaller with increasing H2S concentration, consistent with atomic force microscopy measurements where the distribution of grain size yielded a gamma around 20 nm. The band gap was found to decrease systematically with increasing H2S concentration, indicating an enhancement of π-bonded carbon (sp2C), in agreement with RS results. These results are compared to those obtained for films grown without sulfur (n-C), in order to study the influence of sulfur addition on film microstructure. These analyses led to a correlation between the film microstructure and its electronic properties.

1.
R. Kalish, in Properties of Diamond, edited by G. Davies, (INSPEC, 1994), Chap. 6, and references therein.
2.
J. C. Angus, P. Koidl, and S. Domitz, in Plasma Deposited Thin Films, edited by J. Mort, F. Jansen (CRC Press, Boca Raton, FL, 1986), p. 89;
M. N. Yoder, in Synthetic Diamond: Emerging CVD Science and Technology, edited by K. E. Spear and J. P. Dismukes (Wiley, New York, 1994), p. 4.
3.
J.
Robertson
,
Adv. Phys.
35
,
317
(
1986
), and references therein.
4.
J. B.
Cui
,
J.
Robertson
, and
W. I.
Milne
,
Diamond Relat. Mater.
10
,
868
(
2001
), and references therein.
5.
S.
Gupta
,
B. R.
Weiner
,
B. L.
Weiss
, and
G.
Morell
,
Appl. Phys. Lett.
79
,
3446
(
2001
), and references therein.
6.
S.
Gupta
,
R. S.
Katiyar
,
D. R.
Gilbert
,
R. K.
Singh
, and
G.
Morell
,
J. Appl. Phys.
88
,
5695
(
2000
), and references therein.
7.
T. D.
Corrigan
,
A. R.
Krauss
,
D. M.
Gruen
,
O.
Auciello
, and
R. P. H.
Chang
,
Mater. Res. Soc. Symp. Proc.
593
,
233
(
2000
).
8.
N. A.
Morrison
,
S.
Muhl
,
S. E.
Rodil
,
A. C.
Ferrari
,
M.
Nesladek
,
W. I.
Milne
, and
J.
Robertson
,
Phys. Status Solidi A
172
,
79
(
1999
).
9.
A.
Illie
,
A. C.
Ferrari
,
T.
Yagi
, and
J.
Robertson
,
Appl. Phys. Lett.
76
,
2627
(
2000
).
10.
D. R.
Mckenzie
,
D. A.
Muller
, and
B. A.
Paithorpe
,
Phys. Rev. Lett.
67
,
773
(
1991
).
11.
D.
Gruen
,
Annu. Rev. Mater. Sci.
29
,
211
(
1999
).
12.
N.
Savvides
,
E-MRS Meet.
17
,
275
(
1985
);
N.
Savvides
,
J. Appl. Phys.
59
,
4133
(
1986
).
13.
B.
Dischler
,
A.
Bubenzer
, and
P.
Koidl
,
Solid State Commun.
48
,
105
(
1983
).
14.
R. J.
Nemanich
,
J. T.
Glass
,
G.
Luckovsky
, and
R. E.
Shroder
,
J. Vac. Sci. Technol. A
6
,
1783
(
1988
), and references therein;
D. S.
Knight
and
W. B.
White
,
J. Mater. Res.
4
,
385
(
1990
).
15.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
61
,
14
095
(
2000
).
16.
E.
Pascual
,
C.
Serra
, and
E.
Bertran
,
Surf. Coat. Technol.
47
,
263
(
1991
);
D. E.
Aspnes
and
A. A.
Studna
,
Phys. Rev. B
27
,
985
(
1983
).
17.
B.
Hong
,
J.
Lèe
,
R. W.
Collins
,
Y.
Kuang
,
W.
Drawl
,
R.
Messier
,
T. T.
Tsong
, and
Y. F.
Strausser
,
Diamond Relat. Mater.
6
,
55
(
1997
).
18.
R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
19.
S.
Gupta
,
B. R.
Weiner
, and
G.
Morell
,
Diamond Relat. Mater.
10
,
1968
(
2001
) and references therein.
20.
G.
Morell
,
L. M.
Cancel
,
O. L.
Figueroa
, and
B. R.
Weiner
,
J. Appl. Phys.
88
,
5716
(
2000
).
21.
P. J.
Fallon
,
V. S.
Veeraswamy
,
C. A.
Davis
,
J.
Robertson
,
G. A. J.
Amartunga
,
W. I.
Milne
, and
J.
Koskinen
,
Phys. Rev. B
48
,
4777
(
1993
).
22.
M.
Yoshikawa
,
Mater. Sci. Forum
52&53
,
365
(
1989
);
J.
Robertson
,
Mater. Res. Soc. Symp. Proc.
509
,
83
(
1998
).
23.
R.
Kalish
,
Diamond Relat. Mater.
10
,
1749
(
2001
), and references therein.
24.
M. N.
Gamo
et al.,
Thin Solid Films
382
,
113
(
2001
).
25.
S.
Gupta
,
B. R.
Weiner
, and
G.
Morell
,
Appl. Phys. Lett.
80
,
1471
(
2002
), and references therein.
26.
T. D.
Corrigan
,
A. R.
Krauss
,
D. M.
Gruen
,
O.
Auciello
, and
R. P. H.
Chang
,
Mater. Res. Soc. Symp. Proc.
593
,
233
(
2000
).
27.
S.
Gupta
,
B. L.
Weiss
,
B. R.
Weiner
, and
G.
Morell
,
J. Appl. Phys.
89
,
5671
(
2001
).
28.
O.
Gröning
,
O. M.
Küttel
,
P.
Gröning
, and
L.
Schlapbach
,
J. Vac. Sci. Technol. B
15
,
1970
(
1999
), and references therein.
29.
A. R.
Forouhi
and
I.
Bloomer
,
Phys. Rev. B
34
,
7018
(
1986
).
30.
D. W.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
(
1963
).
31.
D. S.
Knight
and
W. B.
White
,
J. Mater. Res.
4
,
385
(
1990
).
32.
S.
Gupta
,
B. R.
Weiner
, and
G.
Morell
,
Diamond Relat. Mater.
11
,
799
(
2001
).
33.
R. E.
Shröder
and
R. J.
Nemanich
,
Phys. Rev. B
41
,
3738
(
1990
).
34.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
63
,
121405
(
2001
).
35.
S. Gupta, B. L. Weiss, B. R. Weiner, L. Pilione, A. Badzian, and G. Morell, J. Appl. Phys. (in press).
36.
S.
Bhattacharyya
,
K.
Walzer
,
H.
Hietschold
, and
F.
Richter
,
J. Appl. Phys.
89
,
1619
(
2001
).
37.
R.
Haubner
,
S.
Bohr
, and
B.
Lux
,
Diamond Relat. Mater.
8
,
171
(
2000
).
38.
C.
Arena
,
B.
Kleinsorge
,
J.
Robertson
,
W. I.
Milne
, and
M. E.
Welland
,
J. Appl. Phys.
85
,
1609
(
1999
).
39.
Y.
Wang
and
R. J.
Hamers
,
Phys. Rev. Lett.
74
,
403
(
1995
).
40.
J.
Robertson
and
E. P.
O’Reilly
,
Phys. Rev. B
35
,
2946
(
1987
).
41.
R. A
Street
,
M.
Hack
, and
W. B.
Jackson
,
Phys. Rev. B
37
,
4209
(
1988
).
42.
D. A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
636
(
1935
).
43.
G. E.
Jellison
, Jr.
and
F.
Modine
,
Appl. Phys. Lett.
69
,
371
(
1991
).
44.
D.
Bimberg
,
V. A.
Shchukin
,
N. N.
Ledentsov
,
A.
Krost
, and
F.
Heinrichsdorff
,
Appl. Surf. Sci.
130–132
,
713
(
1998
).
45.
W. A.
McGahan
,
T.
Makovicka
,
J.
Hale
, and
J. A.
Wollam
,
Thin Solid Films
253
,
57
(
1994
).
46.
W. A.
McGahan
and
J. A.
Wollam
,
Mater. Res. Soc. Symp. Proc.
349
,
453
(
1994
).
47.
O.
Amir
and
R.
Kalish
,
J. Appl. Phys.
70
,
4958
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.