We report the technique of controlled group V quantum well intermixing (QWI) in a compressively strained In0.76Ga0.24As0.85P0.15/In0.76Ga0.24As0.52P0.48 multiquantum well laser structure and its application to the fabrication of two-section tunable lasers. The blueshift of the band-gap energy was enhanced by capping the samples with films of SiO2 or low-temperature grown InP, while suppressed by a SixNy film with a refractive index of about 2.1. Spatially selective band-gap tuning was achieved by patterning the dielectric film into dot and strip arrays with different surface coverage. Time-of-flight secondary ion mass spectra showed that the enhanced blueshift was caused by the interdiffusion of group V atoms between the quantum wells and barriers. A group V interstitial interdiffusion mechanism is proposed for the sample capped with SiO2 and this is supported by the even more efficient intermixing induced by low-temperature InP, which contains a high concentration of excess phosphorus. A two-section tunable laser operating around 1.55 μm was fabricated using this QWI technology. A tuning range of about 10 nm was demonstrated by simply changing the current injected into the phase tuning section.

1.
I.
Kotaka
,
K.
Wkita
,
M.
Okamoto
,
H.
Asai
, and
Y.
Kondo
,
IEEE Photonics Technol. Lett.
5
,
61
(
1993
).
2.
M.
Aoki
,
H.
Sano
,
M.
Suzuki
,
M.
Takahashi
,
K.
Uomi
, and
A.
Takai
,
Electron. Lett.
27
,
2138
(
1991
).
3.
Y.
Tohmori
,
Y.
Suematsu
,
Y.
Tushima
, and
S.
Arai
,
Electron. Lett.
19
,
656
(
1983
).
4.
M. C. Amann and J. Buus, Tuneable Laser Diodes (Artech, London, 1998), Chap. 7.
5.
J. H.
Marsh
,
Semicond. Sci. Technol.
8
,
1136
(
1993
).
6.
D. G.
Deppe
and
N.
Holonyak
, Jr.
,
J. Appl. Phys.
64
,
R93
(
1988
).
7.
V.
Aimez
,
J.
Beauvais
,
J.
Beerens
,
S. L.
Ng
, and
B. S.
Ooi
,
Appl. Phys. Lett.
79
,
3582
(
2001
).
8.
H. H.
Tan
,
J. S.
Williams
,
C.
Jagadish
,
P. T.
Burke
, and
M.
Gal
,
Appl. Phys. Lett.
68
,
2401
(
1996
).
9.
O. P.
Kowalski
,
C. J.
Hamilton
,
S. D.
McDougall
,
J. H.
Marsh
,
A. C.
Bryce
,
R. M.
De La Rue
,
B.
Vögele
,
C. R.
Stanley
,
C. C.
Button
, and
J. S.
Roberts
,
Appl. Phys. Lett.
72
,
581
(
1998
).
10.
J. H.
Teng
,
S. J.
Chua
,
G.
Li
,
A. S.
Helmy
, and
J. H.
Marsh
,
Appl. Phys. Lett.
76
,
1582
(
2000
).
11.
R. M.
Cohen
,
Gang
Li
,
C.
Jagadish
,
P. T.
Burke
, and
M.
Gal
,
Appl. Phys. Lett.
73
,
803
(
1998
).
12.
B. S.
Ooi
,
K.
McIlvaney
,
M. W.
Street
,
A.
Saher Helmy
,
S. G.
Ayling
,
A. C.
Bryce
,
J. H.
Marsh
, and
J. S.
Roberts
,
IEEE J. Quantum Electron.
33
,
1784
(
1997
).
13.
J. H.
Teng
,
S. J.
Chua
,
Z. H.
Zhang
,
H. Y.
Hong
,
G.
Li
, and
Z. J.
Wang
,
IEEE Photonics Technol. Lett.
12
,
1310
(
2000
).
14.
R. M.
Cohen
,
Mater. Sci. Eng., R.
20
,
167
(
1997
).
15.
J. S.
Yu
,
Y. T.
Lee
, and
H.
Lim
,
J. Appl. Phys.
88
,
5720
(
2000
).
16.
A.
Hamoudi
,
E. V. K.
Pao
,
P.
Krauz
,
A.
Ramdane
,
A.
Ougazzaden
,
D.
Robein
, and
H.
Thibierge
,
J. Appl. Phys.
78
,
5638
(
1995
).
17.
W. J.
Choi
,
S. M.
Han
,
S. I.
Shah
,
S. G.
Hoi
,
K. H.
Woo
,
S.
Lee
,
S. H.
Kim
,
J. I.
Lee
,
K. N.
Kang
, and
J.
Cho
,
IEEE J. Sel. Top. Quantum Electron.
4
,
624
(
1998
).
18.
W. P.
Gillin
,
D. J.
Dunstan
,
K. P.
Homewood
,
L. K.
Howard
, and
B. J.
Sealy
,
J. Appl. Phys.
73
,
3782
(
1992
).
19.
W. M.
Chen
,
P.
Dreszer
,
A.
Prasad
,
A.
Krupiewski
,
W.
Walukiewica
, and
E. R.
Weber
,
J. Appl. Phys.
76
,
600
(
1994
).
20.
A. S. W.
Lee
,
M.
Mackenzie
,
D. A.
Thompson
,
J.
Bursik
,
B. J.
Robinson
, and
G. C.
Weatherly
,
Appl. Phys. Lett.
78
,
3199
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.