Nanomechanical resonators can be fabricated to achieve high natural resonance frequencies, approaching 1 GHz, with quality factors in excess of 104. These resonators are candidates for use as highly selective rf filters and as precision on-chip clocks. Some fundamental and some nonfundamental noise processes will present limits to the performance of such resonators. These include thermomechanical noise, Nyquist–Johnson noise, and adsorption–desorption noise; other important noise sources include those due to thermal fluctuations and defect motion-induced noise. In this article, we develop a self-contained formalism for treating these noise sources, and use it to estimate the impact that these noise processes will have on the noise of a model nanoscale resonator, consisting of a doubly clamped beam of single-crystal Si with a natural resonance frequency of 1 GHz.

1.
A. N.
Cleland
and
M. L.
Roukes
,
Appl. Phys. Lett.
69
,
2653
(
1996
).
2.
A. N.
Cleland
and
M. L.
Roukes
,
Nature (London)
320
,
160
(
1998
).
3.
Y. T.
Yang
,
K. L.
Ekinci
,
X. M. H.
Huang
,
L. M.
Schiavone
,
M. L.
Roukes
,
C. A.
Zorman
, and
M.
Mehregany
,
Appl. Phys. Lett.
78
,
162
(
2001
).
4.
K.
Yasumura
,
T.
Stowe
,
E.
Chow
,
T.
Pfafman
,
T.
Keeny
,
B.
Stipe
, and
D.
Rugar
,
J. Microelectromech. Syst.
9
,
117
(
2000
).
5.
C.
Nguyen
and
R.
Howe
,
Proc. IEEE Intl. Freq. Control Symp.
48
,
127
(
1994
).
6.
K.
Wang
,
A.
Wong
, and
C.
Nguyen
,
J. Microelectromech. Syst.
9
,
347
(
2000
).
7.
R.
Lifshitz
and
M.
Roukes
,
Phys. Rev. B
61
,
5600
(
2000
).
8.
F.
Walls
and
J.
Vig
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
576
(
1995
).
9.
T.
Gabrielson
,
IEEE Trans. Electron Devices
40
,
903
(
1993
).
10.
L.
Cutler
and
C.
Searle
,
Proc. IEEE
54
,
136
(
1966
).
11.
Y.
Yong
and
J.
Vig
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
36
,
452
(
1989
).
12.
J.
Vig
and
Y.
Kim
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
1558
(
1999
).
13.
A. Nowick and B. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972).
14.
T.
Albrecht
,
P.
Grütter
,
D.
Horne
, and
D.
Rugar
,
J. Appl. Phys.
69
,
668
(
1991
).
15.
S. Timoshenko, D. Young, and J. W. Weaver, Vibration Problems in Engineering (Wiley, New York, 1974).
16.
X. Huang, K. Ekinci, Y. Yang, C. Zorman, and M. L. Roukes, (unpublished).
17.
A. N.
Cleland
and
M. L.
Roukes
,
Sens. Actuators A
72
,
256
(
1999
).
18.
W.
Egan
,
IEEE Trans. Instrum. Meas.
37
,
240
(
1988
).
19.
W. Robins, Phase Noise in Signal Sources (Peter Peregrinus Ltd., London, 1982).
20.
D.
Allan
,
Proc. IEEE
54
,
221
(
1966
).
21.
W. Egan, Frequency Synthesis by Phase Lock (Wiley, New York, 1981).
22.
Hewlett-Packard 10811D/E application note.
23.
L. Landau, E. Lifshitz, and L. Pitaevskii, Statistical Physics, 4th ed. (Pergamon, Oxford, 1980).
24.
W.
Mason
and
T.
Bateman
,
Phys. Rev. A
134
,
1387
(
1964
).
25.
G. S.
et al.,
J. Phys. Chem. Solids
48
,
641
(
1987
).
26.
A. Zangwill, Physics at Surfaces (Cambridge University Press, New York, 1988).
27.
S.
Roorda
,
W. C.
Sinke
,
J. M.
Poate
,
D. C.
Jacobson
,
D.
Dierker
,
B. S.
Dennis
,
D. J.
Eaglesham
,
F.
Spaepen
and
P.
Fuoss
,
Phys. Rev. B
44
,
3702
(
1991
).
28.
P.
Dutta
,
P.
Dimon
, and
P.
Horn
,
Phys. Rev. Lett.
43
,
646
(
1979
).
This content is only available via PDF.
You do not currently have access to this content.