Microstructural changes of amorphous V2O5 films with lithium intercalation are studied using Raman-scattering measurements. The Raman spectra of as-deposited films show two broad peaks around at 520 and 650 cm−1, due to the stretching modes of the V3O and V2O bonds, respectively, and a relatively sharp peak at 1027 cm−1 due to the V5+=O stretching mode of terminal oxygen atoms. In addition, there is a peak at 932 cm−1 that we attribute to the V4+=O bonds. Comparison of the Raman spectra of V2O5 films with different oxygen deficiencies confirms this assignment. This Raman peak due to the stretching mode of the V4+=O bonds develops and shifts toward lower frequencies with increasing lithium concentration. Comparison to results from gasochromic hydrogen insertion indicates that the 932 cm−1 Raman peak is not a result of vibrations which involve Li or H atoms. We propose that the V4+=O bonds are created by two different mechanisms: a direct conversion from V5+=O bonds and the breaking of the single oxygen bonds involving V4+ ions.

1.
R.
Ramirez
,
B.
Casal
,
L.
Utrera
, and
E.
Ruiz-Hitzky
,
J. Phys. Chem.
94
,
8965
(
1990
).
2.
A.
Legrouri
,
T.
Baird
, and
J. R.
Fryer
,
J. Catal.
140
,
173
(
1993
).
3.
H. K.
Park
,
W. H.
Smyrl
, and
M. D.
Ward
,
J. Electrochem. Soc.
142
,
15
(
1995
).
4.
K.
West
,
B.
Zachau-Christiansen
,
T.
Jacobsen
, and
S.
Skaarup
,
Solid State Ionics
76
,
1068
(
1995
).
5.
C. R.
Aita
,
Y.-L.
Liu
,
M. L.
Kao
, and
S. D.
Hansen
,
J. Appl. Phys.
60
(
2
),
749
(
1986
).
6.
S. F.
Cogan
,
N. M.
Nguyen
,
Stephen J.
Perrotti
, and
R. D.
Rauh
,
J. Appl. Phys.
66
(
3
),
1333
(
1989
).
7.
G. S.
Nadkarni
and
V. S.
Shirodkar
,
Thin Solid Films
105
,
115
(
1983
).
8.
H.
Hirashima
,
M.
Ide
, and
T.
Yoshida
,
J. Non-Cryst. Solids
86
,
327
(
1986
).
9.
D. B.
Le
,
S.
Passerini
,
J.
Guo
,
J.
Ressler
,
B. B.
Owens
, and
W. H.
Smyrl
,
J. Electrochem. Soc.
143
,
2099
(
1996
).
10.
S.
Passerini
,
W. H.
Smyrl
,
M.
Berrettoni
,
R.
Tossici
,
J. M.
Rosolen
,
R.
Marassi
, and
F.
Decker
,
Solid State Ionics
90
,
5
(
1996
).
11.
S.-H.
Lee
,
P.
Liu
,
C. E.
Tracy
, and
D. K.
Benson
,
Electrochem. Solid-State Lett.
2
(
9
),
425
(
1999
).
12.
S. Passerini, D. B. Le, H. C. Foong, B. B. Owens, and W. H. Smyrl, The Electrochemical Soc. Proc. Ser. 1994, PV 94-28, p. 306.
13.
Y.
Dimitriev
,
V.
Dimitrov
,
M.
Arnaudov
, and
D.
Topalov
,
J. Non-Cryst. Solids
57
,
147
(
1983
).
14.
M.
Henri
,
C.
Sanchez
,
C.
R’Kha
, and
J.
Livage
,
J. Phys. C
14
,
829
(
1981
).
15.
N.
Machida
,
R.
Fuchida
, and
T.
Minami
,
J. Electrochem. Soc.
136
,
2133
(
1989
).
16.
M.
Nabavi
,
C.
Sanchez
, and
J.
Livage
,
Philos. Mag. B
63
,
941
(
1991
).
17.
S.-H.
Lee
,
H. M.
Cheong
,
J.-G.
Zhang
,
A.
Mascarenhas
,
D. K.
Benson
, and
S. K.
Deb
,
Appl. Phys. Lett.
74
,
242
(
1999
).
18.
S.-H.
Lee
,
H. M.
Cheong
,
C. E.
Tracy
,
A.
Mascarenhas
,
J. R.
Pitts
,
G.
Jorgensen
, and
S. K.
Deb
,
Appl. Phys. Lett.
76
,
3908
(
2000
).
19.
K.
Ajito
,
L. A.
Nagahara
,
D. A.
Tryk
,
K.
Hashimoto
, and
A.
Fujishima
,
J. Phys. Chem.
99
,
16383
(
1995
).
20.
T.
Oi
,
K.
Miyauchi
, and
K.
Uehara
,
J. Appl. Phys.
53
,
1823
(
1982
).
21.
S.-H.
Lee
,
H. M.
Cheong
,
P.
Liu
,
D.
Smith
,
C. E.
Tracy
,
A.
Mascarenhas
,
J. R.
Pitts
, and
S. K.
Deb
,
J. Appl. Phys.
88
,
3076
(
2000
).
22.
C. N. R. Rao and B. Raveau, Transition Metal Oxides (VCH, New York, 1995), p. 177.
23.
R. J. H. Clark, The Chemistry of Titanium and Vanadium (Elsevier, New York, 1968).
24.
C.
Julien
,
G. A.
Nazri
, and
O.
Bergstrom
,
Phys. Status Solidi B
201
,
319
(
1997
).
25.
L.
Abello
,
E.
Husson
,
Y.
Repelin
, and
G.
Lucazeau
,
Spectrochim. Acta, Part A
39
,
641
(
1983
).
26.
J. M.
Jehng
,
F. D.
Hardcastle
, and
I. E.
Wachs
,
Solid State Ionics
32/33
,
904
(
1989
).
27.
S.
Passerini
,
B.
Scrosati
, and
A.
Gorenstein
,
J. Electrochem. Soc.
137
,
3297
(
1990
).
28.
J. S. E. M.
Svensson
and
C. G.
Granqvist
,
Appl. Phys. Lett.
49
,
1566
(
1986
).
29.
F.
Hahn
,
D.
Floner
,
B.
Beolen
, and
C.
Lamy
,
Electrochim. Acta
32
,
1631
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.