Carbon often appears in Si in concentrations above its solubility. In this article, we propose a comprehensive model that, taking diffusion and clustering into account, is able to reproduce a variety of experimental results. Simulations have been performed by implementing this model in a Monte-Carlo atomistic simulator. The initial path for clustering included in the model is consistent with experimental observations regarding the formation and dissolution of substitutional C–interstitial C pairs (CsCi). In addition, carbon diffusion profiles at 850 and 900 °C in carbon-doping superlattice structures are well reproduced. Finally, under conditions of thermal generation of intrinsic point defects, the weak temperature dependence of the Si interstitial undersaturation and the vacancy supersaturation in carbon-rich regions also agree with experimental measurements.

1.
H.
Rücker
,
B.
Heinemann
,
W.
Röpke
,
R.
Kurps
,
D.
Krüger
,
G.
Lippert
, and
H. J.
Osten
,
Appl. Phys. Lett.
73
,
1682
(
1998
).
2.
P. A.
Stolk
,
H.-J.
Gossmann
,
D. J.
Eaglesham
,
D. C.
Jacobson
,
C. S.
Rafferty
,
G. H.
Gilmer
,
M.
Jaraiz
,
J. M.
Poate
,
H. S.
Luftman
, and
T. E.
Haynes
,
J. Appl. Phys.
81
,
6031
(
1997
).
3.
U.
Gösele
,
Mater. Res. Soc. Symp. Proc.
59
,
419
(
1986
).
4.
H.
Bracht
,
E. E.
Haller
, and
R.
Clark-Phelps
,
Phys. Rev. Lett.
81
,
393
(
1998
).
5.
A. R.
Bean
and
R. C.
Newman
,
J. Phys. Chem. Solids
32
,
1211
(
1971
).
6.
F.
Rollert
,
N. A.
Stolwijk
, and
H.
Mehrer
,
Mater. Sci. Forum
38–41
,
753
(
1989
).
7.
P.
Werner
,
H.-J.
Gossmann
,
D. C.
Jacobson
, and
U.
Gösele
,
Appl. Phys. Lett.
73
,
2465
(
1998
).
8.
H.
Rücker
,
B.
Heinemann
,
D.
Bolze
,
D.
Knoll
,
D.
Krüger
,
R.
Kurps
,
H. J.
Osten
,
P.
Schley
,
B.
Tillack
, and
P.
Zaumseil
, Tech. Dig. Int. Electron Devices Meet. 1999, 345.
9.
G. D. Watkins, in Radiation Effects in Semiconductors, edited by M. Hulin (Dunod, Paris 1965).
10.
R. F.
Scholz
,
P.
Werner
,
U.
Gösele
, and
T. Y.
Tan
,
Appl. Phys. Lett.
74
,
392
(
1999
).
11.
See, for example,
H.
Bracht
,
N. A.
Stolwijk
, and
Mehrer
,
Phys. Rev. B
52
,
16
542
(
1995
), and references therein.
12.
R. A.
Casali
,
H.
Rücker
, and
M.
Methfessel
,
Appl. Phys. Lett.
78
,
913
(
2001
).
13.
P. E.
Blöchl
,
E.
Smargiassi
,
R.
Car
,
D. B.
Laks
,
W.
Andreoni
, and
S. T.
Pantelides
,
Phys. Rev. Lett.
70
,
2435
(
1993
).
14.
R.
Pinacho
,
M.
Jaraiz
,
H.-J.
Gossmann
,
G. H.
Gilmer
,
J. L.
Benton
, and
P.
Werner
,
Mater. Res. Soc. Symp. Proc.
610
,
B7
.
2
(
2000
).
15.
M.
Jaraiz
,
P.
Castrillo
,
R.
Pinacho
,
L.
Pelaz
,
J.
Barbolla
,
G.-H.
Gilmer
, and
C. S.
Rafferty
,
Mater. Res. Soc. Symp. Proc.
610
,
B11
.
1
(
2000
).
16.
L. W.
Song
and
G. D.
Watkins
,
Phys. Rev. B
42
,
5759
(
1990
).
17.
S.
Coffa
and
S.
Libertino
,
Appl. Phys. Lett.
73
,
3369
(
1998
).
18.
J.
Zhu
,
T. Dı́az
de la Rubia
, and
C.
Mailhiot
,
Mater. Res. Soc. Symp. Proc.
439
,
59
(
1997
).
19.
E. V.
Lavrov
,
L.
Hoffmann
, and
B. Bech
Nielsen
,
Phys. Rev. B
60
,
8081
(
1999
).
20.
L.
Pelaz
,
G. H.
Gilmer
,
H. J.
Gossmann
,
C. S.
Rafferty
,
M.
Jaraiz
, and
J.
Barbolla
,
Appl. Phys. Lett.
74
,
3657
(
1999
).
21.
U.
Gösele
,
P.
Laveant
,
R.
Scholz
,
N.
Engler
, and
P.
Werner
,
Mater. Res. Soc. Symp. Proc.
610
,
B7
.
1
(
2000
).
22.
H.-J.
Gossmann
,
P. A.
Stolk
,
D. J.
Eaglesham
,
G. H.
Gilmer
,
J. M.
Poate
,
Proc.-Electrochem. Soc.
64
,
46
(
1996
).
23.
The term “long-hop” denote here the distance traveled by a carbon atom as a particular Ci.
See
Cowern
et al.,
Phys. Rev. Lett.
65
,
2434
(
1990
) for the case of boron.
24.
E. V.
Lavrov
,
B. Bech
Nielsen
,
J. R.
Byberg
,
B.
Hourahine
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
,
Phys. Rev. B
62
,
158
(
2000
).
25.
J. R.
Byberg
,
B. Bech
Nielsen
,
M.
Fancuilli
,
S. K.
Estreicher
, and
P. A.
Fedders
,
Phys. Rev. B
61
,
12
939
(
2000
).
26.
P. M.
Fahey
,
P. B.
Griffin
, and
J. D.
Plummer
,
Rev. Mod. Phys.
61
,
289
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.