The piezoelectric properties of lead zirconate titanate (PZT)–polymer composites were studied as a function of composition and phase connectivity. PZT skeletal structures were fabricated by robotic deposition, densified at 1275 °C, and subsequently infiltrated with epoxy to produce the desired PZT–polymer composites. These 3-X structures consisted of a three-dimensional lattice of PZT rods (3–3) embedded in a polymer matrix, a PZT lattice/polymer matrix capped with PZT face plates (3–2), or PZT lattice/polymer matrix capped with PZT face plates and encircled by a solid PZT ring (3–1). The PZT:polymer ratio was varied systematically by changing the lattice (rod) spacing in each composite architecture. The concentration of PZT pillars, which formed along the poling direction at the intersections between PZT rods, varied as the PZT volume fraction squared. These 3-X composites displayed enhanced hydrostatic figures of merit relative to monolithic PZT due to stress concentration in the PZT pillars and their dramatically reduced dielectric constant, with the highest values found for the 3–2 and 3–1 composites. Our experimental observations were compared to theoretical predictions based on an isostrain, unit cell model modified to account for the partial support of stress in the stiff epoxy phase.

1.
R. E.
Newnham
,
L. J.
Bowen
,
K. A.
Klicker
, and
L. E.
Cross
,
Mater. Eng.
2
,
93
(
1980
).
2.
J. F.
Tressler
,
S.
Alkpu
,
A.
Dogan
, and
R. E.
Newnham
,
Appl. Sci. Manuf.
30A
,
477
(
1999
).
3.
V. F.
Janas
and
A.
Safari
,
J. Am. Ceram. Soc.
78
,
2945
(
1995
).
4.
T. R.
Gururaja
,
Am. Ceram. Soc. Bull.
73
,
50
(
1994
).
5.
R. E.
Newnham
,
D. P.
Skinner
, and
L. E.
Cross
,
Mater. Res. Bull.
13
,
525
(
1978
).
6.
R. E. Newnham, Proceedings of the 21st University Conference on Ceramic Science (1986), pp. 385–394.
7.
D. P.
Skinner
,
R. E.
Newnham
, and
L. E.
Cross
,
Mater. Res. Bull.
13
,
599
(
1978
).
8.
T. R.
Shrout
,
W. A.
Schulze
, and
J. V.
Biggers
,
Mater. Res. Bull.
14
,
1553
(
1979
).
9.
K.
Rittenmyer
,
T.
Shrout
,
W. A.
Schulze
, and
R. E.
Newnham
,
Ferroelectrics
41
,
189
(
1982
).
10.
A.
Safari
,
R. E.
Newnham
,
L. E.
Cross
, and
W. A.
Schulze
,
Ferroelectrics
41
,
197
(
1982
).
11.
A.
Safari
,
A.
Halliyal
, and
R. E.
Newnham
,
Mater. Res. Bull.
17
,
301
(
1982
).
12.
T.
Hayashi
,
S.
Sugihara
, and
K.
Okazaki
,
Ferroelectrics
131
,
75
(
1992
).
13.
M. J.
Creedon
and
W. A.
Schulze
,
Ferroelectrics
153
,
333
(
1994
).
14.
C.
Van Hoy
,
A.
Barda
,
M.
Griffith
, and
J. W.
Halloran
,
J. Am. Ceram. Soc.
81
,
152
(
1998
).
15.
M.
Kahn
and
M.
Chase
,
J. Am. Ceram. Soc.
75
,
649
(
1992
).
16.
M.
Miyashita
,
K.
Takano
, and
T.
Toda
,
Ferroelectrics
28
,
397
(
1980
).
17.
M.
Allahverdi
,
S. C.
Danforth
,
M.
Jafari
, and
A.
Safari
,
J. Eur. Ceram. Soc.
21
,
1485
(
2001
).
18.
A. Bandyopadhyay, R. K. Panda, V. F. Janas, M. K. Agarwala, R. van Weeren, S. C. Danforth, and A. Safari, IEEE Trans. 999 (1996).
19.
D. B.
Chrisey
,
Science
289
,
879
(
2000
).
20.
J. H.
Song
,
M. J.
Edirisinghe
, and
J. R. G.
Evans
,
J. Am. Ceram. Soc.
82
,
3374
(
1999
).
21.
K. A. M.
Seerden
,
N.
Reis
,
J. R. G.
Evans
,
P. S.
Grant
,
J. W.
Halloran
, and
B.
Derby
,
J. Am. Ceram. Soc.
84
,
2514
(
2001
).
22.
S. L.
Morissette
,
J. A.
Lewis
,
P. G.
Clem
,
J.
Cesarano
III
, and
D. B.
Dimos
,
J. Am. Ceram. Soc.
84
,
2462
(
2001
).
23.
J.
Cesarano
III
,
R.
Segalman
, and
P.
Calvert
,
Ceram. Ind.
148
,
94
(
1998
).
24.
J. Cesarano III and P. Calvert, U.S. Patent No. 6,027,326.
25.
J.
Cesarano
III
,
Mater. Res. Soc. Symp. Proc.
542
,
133
(
1998
).
26.
E.
Sachs
,
M.
Cima
,
P.
Williams
,
D.
Brancazio
, and
J.
Cornie
,
J. Eng. Ind. Trans. ASME
114
,
481
(
1992
).
27.
E.
Sachs
,
M.
Cima
,
J.
Bredt
,
A.
Curodeau
,
T.
Fan
, and
D.
Brancazio
,
Manuf. Rev.
5
,
117
(
1992
).
28.
M.
Agarwala
,
A.
Bandyopadhyay
,
R.
van Weewn
,
A.
Safari
,
S. C.
Danforth
,
N. A.
Langrana
,
V. R.
Jamalabad
, and
P. J.
Whalen
,
Am. Ceram. Soc. Bull.
75
,
60
(
1996
).
29.
B. A.
Tuttle
,
J. E.
Smay
,
J.
Cesarano
III
,
J. A.
Voigt
,
T. W.
Scofield
,
W. R.
Olson
, and
J. A.
Lewis
,
J. Am. Ceram. Soc.
84
,
872
(
2001
).
30.
W.
Cao
,
Q. M.
Zhang
, and
L. E.
Cross
,
J. Appl. Phys.
72
,
5814
(
1992
).
31.
W.
Cao
,
Q. M.
Zhang
, and
L. E.
Cross
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
40
,
103
(
1993
).
32.
R.
Buscall
,
P. D. A.
Mills
,
J. W.
Goodwin
, and
D. W.
Lawson
,
J. Chem. Soc., Faraday Trans. 1
84
,
4249
(
1988
).
33.
G. M.
Channell
and
C. F.
Zukoski
,
AIChE J.
43
,
1700
(
1997
).
34.
C. J. Rueb and C. F. Zukoski, J. Rheol. , 197 (1997).
35.
D.
Stauffer
,
A.
Coniglio
, and
M.
Adam
,
Adv. Polym. Sci.
44
,
103
(
1982
).
36.
B. V.
Velamakanni
,
F. F.
Lange
,
F. W.
Zok
, and
D. S.
Pearson
,
J. Am. Ceram. Soc.
77
,
216
(
1994
).
37.
W. B.
Russel
,
J. Rheol.
24
,
287
(
1980
).
38.
J. E. Smay, J. Cesarano III, and J. A. Lewis (unpublished).
39.
J. S. Reed, Principles of Ceramics Processing, 2nd ed. (Wiley, New York, 1995).
40.
N. M.
Shorrocks
,
M. E.
Brown
,
R. W.
Whatmore
, and
F. W.
Ainger
,
Ferroelectrics
54
,
215
(
1984
).
41.
K. A.
Klicker
,
J. V.
Biggers
, and
R. E.
Newnham
,
J. Am. Ceram. Soc.
64
,
5
(
1981
).
42.
M. J.
Haun
,
P.
Moses
,
T. R.
Gururaja
,
W. A.
Schulze
, and
R. E.
Newnham
,
Ferroelectrics
49
,
259
(
1983
).
43.
W.
Cao
,
Q. M.
Zhang
,
J. Z.
ZHao
, and
L. E.
Cross
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
37
(
1995
).
44.
H. Banno, Proc. IEEE , 186 (1995).
45.
H.
Banno
,
Jpn. J. Appl. Phys., Part 1
33
,
5518
(
1994
).
46.
H.
Banno
,
Jpn. J. Appl. Phys., Part 1
32
,
4214
(
1993
).
47.
Guide to Modern Piezoelectric Ceramics (Morgan Matroc, Electroceramics Division, Bedford, OH, 1997).
48.
Q. M.
Zhang
,
W.
Cao
,
H.
Wang
, and
L. E.
Cross
,
J. Appl. Phys.
73
,
1403
(
1993
).
49.
M. J. Creedon, S. Gopalakrishnan, and W. A. Schulze, Proceedings of the IEEE International Symposium on Applications of Ferroelectrics, University Park, PA, August 7–10, 1994, pp. 299–302.
This content is only available via PDF.
You do not currently have access to this content.