The optical constants ε(E)=ε1(E)+iε2(E) of unintentionally doped In0.53Ga0.47As lattice matched to InP have been measured at 300 K using spectral ellipsometry in the range of 0.4 to 5.1 eV. The ε(E) spectra displayed distinct structures associated with critical points at E0 (direct gap), spin-orbit split E00 component, spin-orbit split E1,E11,E0 feature, as well as E2. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden model dielectric function [Holden et al., Phys. Rev. B 56, 4037 (1997)], plus a Kramers–Kronig consistent correction, described in this work, that improves the fitting at low energies. This extended model is based on the electronic energy-band structure near these critical points plus excitonic and band-to-band Coulomb-enhancement effects at E0,E00, and the E1,E11, doublet. In addition to evaluating the energies of these various band-to-band critical points, information about the binding energy (R1) of the two-dimensional exciton related to the E1,E11 critical points was obtained. The value of R1 was in good agreement with effective mass/kp theory. The ability to evaluate R1 has important ramifications for first-principles band-structure calculations that include exciton effects at E0,E1, and E2 [M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998); S. Albrecht et al., Phys. Rev. Lett. 80, 4510 (1998)].

1.
T.
Kaneto
,
K. W.
Kim
, and
M. A.
Littlejohn
,
Appl. Phys. Lett.
63
,
48
(
1993
).
2.
G. L.
Belenky
,
P. A.
Garbinski
,
S.
Luryi
,
M.
Mastrapasqua
,
A. Y.
Cho
,
R. A.
Hamm
,
T. R.
Hayes
,
E. J.
Laskowski
,
D. L.
Sivco
, and
P. R.
Smith
,
J. Appl. Phys.
73
,
8618
(
1993
).
3.
M.
Ohkubo
,
A.
Iketani
,
T.
Ijichi
, and
T.
Kikuta
,
Appl. Phys. Lett.
59
,
2697
(
1991
).
4.
J. Singh in Semiconductor Devices: An Introduction (McGraw-Hill, New York, 1994).
5.
D. G.
Depee
,
N. D.
Gerrard
,
C. J.
Pinzone
,
R. D.
Dupuis
, and
E. F.
Schubert
,
Appl. Phys. Lett.
56
,
315
(
1990
).
6.
H. W.
Dinges
,
H.
Burkhard
,
R.
Lösch
,
H.
Nickel
, and
W.
Schlapp
,
Appl. Surf. Sci.
54
,
477
(
1992
).
7.
H.
Burkhard
,
H. W.
Dinges
, and
E.
Kuphal
,
J. Appl. Phys.
53
,
655
(
1982
).
8.
S. M.
Kelso
,
D. E.
Aspnes
,
M. A.
Pollack
, and
R. E.
Nahory
,
Phys. Rev. B
26
,
6669
(
1982
).
9.
T. W.
Nee
and
A. K.
Green
,
J. Appl. Phys.
68
,
5314
(
1990
).
10.
S.
Adachi
,
Phys. Rev. B
39
,
12612
(
1989
).
11.
S.
Adachi
,
J. Appl. Phys.
53
,
5863
(
1982
).
12.
W.
Kowalsky
,
H. H.
Wehmann
,
F.
Fiedler
, and
A.
Schlachetzki
,
Phys. Status Solidi A
77
,
K75
(
1983
).
13.
T.
Holden
,
P.
Ram
,
F. H.
Pollak
,
J. L.
Freeouf
,
B. X.
Yang
, and
M. C.
Tamargo
,
Phys. Rev. B
56
,
4037
(
1997
).
14.
Y.
Petroff
and
M.
Balkanski
,
Phys. Rev. B
3
,
3299
(
1971
).
15.
M.
Rohlfing
and
S. G.
Louie
,
Phys. Rev. Lett.
81
,
2312
(
1998
).
16.
S.
Albrecht
,
L.
Reining
,
R.
Del Sole
, and
G.
Onida
,
Phys. Rev. Lett.
80
,
4510
(
1998
).
17.
R. A.
Hamm
,
D.
Ritter
, and
H.
Temkin
,
J. Vac. Sci. Technol. A
12
,
2790
(
1994
).
18.
M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors (Springer, Berlin, 1989).
19.
K.
Wei
,
F. H.
Pollak
,
J. L.
Freeouf
,
D.
Shvydka
, and
A. D.
Compaan
,
J. Appl. Phys.
85
,
7418
(
1999
).
20.
F. H.
Pollak
,
M.
Muñoz
,
T.
Holden
,
K.
Wei
, and
V. M.
Asnin
,
Phys. Status Solidi B
215
,
33
(
1999
).
21.
M.
Schubert
,
J. A.
Woollam
,
G.
Leigiger
,
B.
Rheinländer
,
I.
Pietzonka
,
T.
Saß
, and
V.
Gottschalch
,
J. Appl. Phys.
86
,
2025
(
1999
).
22.
T.
Holden
,
F. H.
Pollak
,
J. L.
Freeouf
,
G. W.
Charache
, and
J. E.
Raynolds
, in
Thermophotovoltaic Generation of Electricity
, edited by
T. J.
Coutts
,
J. P.
Renner
, and
C. S.
Allman
,
AIP Conf. Proc.
460
,
39
(
1999
).
23.
E. O.
Kane
,
Phys. Rev.
180
,
852
(
1969
);
E. O. Kane, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1966), Vol. 1, p. 75.
24.
S. H.
Pan
,
H.
Shen
,
Z.
Hang
,
F. H.
Pollak
,
W.
Zhuang
,
Q.
Xu
,
A. P.
Roth
,
R.
Masut
,
C.
LeCelle
, and
D.
Morris
,
Phys. Rev. B
38
,
3375
(
1988
).
25.
M.
Muñoz
,
K.
Wei
,
F. H.
Pollak
,
J. L.
Freeouf
,
C. A.
Wang
, and
G. W.
Charache
,
J. Appl. Phys.
87
,
1780
(
2000
).
26.
M.
Muñoz
,
K.
Wei
,
F. H.
Pollak
,
J. L.
Freeouf
, and
G. W.
Charache
,
Phys. Rev. B
60
,
8105
(
1999
).
27.
E. D. Palik, Handbook of Optical Constants I (Academic, New York, 1985);
Handbook of Optical Constants II (Academic, New York, 1991).
28.
S.
Adachi
and
T.
Taguchi
,
Phys. Rev. B
43
,
9569
(
1991
).
29.
K.
Suzuki
and
S.
Adachi
,
J. Appl. Phys.
83
,
1018
(
1998
).
30.
R. J.
Elliot
,
Phys. Rev.
108
,
1384
(
1957
).
31.
P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Heidelberg, 1996).
32.
F. Bassani and G. Pastori Parravicini, Electronic States and Optical Transitions in Solids (Pergamon, Oxford, 1975).
33.
C. H.
Yan
,
H.
Yao
,
J. M.
Van Hove
,
A. M.
Wowchak
,
P. P.
Chow
, and
J. M.
Zavada
,
J. Appl. Phys.
88
,
3463
(
2000
).
34.
C. C.
Kim
and
S.
Sivananthan
,
Phys. Rev. B
53
,
1475
(
1996
).
35.
S.
Adachi
,
Phys. Rev. B
41
,
1003
(
1990
).
36.
M. Cardona, Modulation Spectroscopy (Academic, New York, 1969).
37.
F. H.
Pollak
and
H.
Shen
,
Mater. Sci. Eng., R.
10
,
275
(
1993
).
38.
Numerical Data and Functional Relationships in Science and Technology, Landolt-Bürnstein, p. 102 Tables, Vols. 17a and 17b, edited by O. Madelung, M. Schultz, and H. Weiss (Springer, New York, 1982).
39.
T. Holden (private communication).
40.
S. G. Louie (private communication).
41.
M.
Muñoz
,
F. H.
Pollak
, and
T.
Holden
,
Semicond. Sci. Technol.
16
,
281
(
2001
).
42.
F. H.
Pollak
,
J. Appl. Phys.
88
,
2175
(
2001
).
43.
A. B.
Djurišić
and
E. H.
Li
,
Semicond. Sci. Technol.
14
,
958
(
1999
).
44.
A. B.
Djurišić
and
E. H.
Li
,
J. Appl. Phys.
89
,
273
(
2001
).
45.
A. B.
Djurišić
and
E. H.
Li
,
J. Appl. Phys.
85
,
2848
(
1999
).
46.
K.
Nakajima
,
A.
Yamaguchi
,
K.
Akita
, and
T.
Kotani
,
J. Appl. Phys.
49
,
5405
(
1976
).
47.
Y.
Takeda
,
A.
Sasaki
,
Y.
Imamura
, and
T.
Takagi
,
J. Appl. Phys.
47
,
5405
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.