We describe a technique to create very small semiconductor nanostructures, with sizes far beyond the limit of conventional optical lithography processes, by the use self-assembling diblock copolymers as nanolithographic masks. Quantum structures with very high aspect ratio of 1:10 were fabricated by dry etching. In a first step, so-called diblock copolymer micelles were generated in a toluene solution. These micelles were loaded by a noble-metal salt. After dipping a substrate into this solution, a monolayer of ordered micelles is generated, covering almost the complete surface. After treatment in a hydrogen plasma all of the organic components are removed and only crystalline metal clusters of ≈12 nm size remain. This metal cluster mask can be used directly in a chlorine dry etching process to etch cylinders in GaAs and its alloys of In and Al. It is also possible to etch through a quantum well layer underneath the surface in order to produce quantum dots. The resulting nanostructures were investigated by scanning force microscopy, by high resolution transmission electron microscopy, and also by low temperature photoluminescence spectroscopy.

1.
T.
Bestwick
,
M.
Dawson
,
A.
Kean
, and
G.
Duggan
,
Appl. Phys. Lett.
66
,
1382
(
1995
).
2.
D. Bimberg, M. Grundmann and N. Ledentsov, Quantum Dot Heterostructures (Wiley-VCH, Chichester, 1998).
3.
D.
Leonard
,
K.
Pond
,
P.
Petroff
,
Phys. Rev. B
50
,
11687
(
1994
).
4.
J. H.
Ryou
,
R. D.
Dupuis
,
D. T.
Mathes
,
R.
Hull
,
C. V.
Reddy
, and
V.
Narayanamurti
,
Appl. Phys. Lett.
78
,
3526
(
2001
).
5.
M.
Haupt
,
S.
Miller
,
K.
Bitzer
,
K.
Thonke
,
R.
Sauer
,
J. P.
Spatz
,
S.
Mössmer
,
C.
Hartmann
, and
M.
Möller
,
Phys. Status Solidi B
224
,
867
(
2001
).
6.
J.
Spatz
,
T.
Herzog
,
S.
Mößmer
,
P.
Ziemann
, and
M.
Möller
,
Adv. Mater.
11
,
149
(
1999
).
7.
R.
Li
,
P.
Dapkus
,
M.
Thompson
,
W.
Jeong
,
C.
Harrison
,
P.
Chaikin
,
R.
Register
, and
D.
Adamson
,
Appl. Phys. Lett.
76
,
1689
(
2000
).
8.
P.
Manski
,
C.
Harrison
,
P.
Chaikin
,
R.
Register
, and
N.
Yao
,
Appl. Phys. Lett.
68
,
2586
(
1996
).
9.
C.
Harrison
,
M.
Park
,
P.
Chaikin
,
R.
Register
, and
D.
Adamson
,
ACS Symp. Ser.
706
,
2
(
1997
).
10.
J.
Spatz
,
T.
Herzog
,
S.
Mößmer
,
P.
Ziemann
, and
M.
Möller
,
ACS Symp. Ser.
706
,
12
(
1997
).
11.
J.
Spatz
,
M.
Möller
, and
P.
Ziemann
,
Phys. Bl.
55
,
49
(
1999
).
12.
P.
Lewis
,
H.
Ahmed
, and
T.
Sato
,
J. Vac. Sci. Technol. B
16
,
2938
(
1998
).
13.
T.
Sato
,
D.
Hasko
, and
H.
Ahmed
,
J. Vac. Sci. Technol. B
15
,
45
(
1997
).
14.
J. P.
Spatz
,
S.
Mößmer
,
M.
Möller
,
T.
Herzog
,
H. G.
Boyen
,
P.
Ziemann
, and
B.
Kabius
,
Langmuir
16
,
407
(
2000
).
15.
E.
Clausen
,
H.
Craighead
,
J.
Worlock
,
J.
Harbison
,
L.
Schiavone
,
L.
Florez
, and
B.
Van der Gaag
,
Appl. Phys. Lett.
55
,
1427
(
1989
).
16.
T.
Borzenko
,
Y.
Koval
,
L.
Kulik
, and
A.
Larionov
,
Appl. Phys. Lett.
70
,
2297
(
1997
).
17.
P. R.
Schwoebel
, and
I.
Brodie
,
J. Vac. Sci. Technol. B
13
,
1391
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.