Ab initio total-energy density functional theory is used to investigate the low temperature (LT) monoclinic form of Mg2NiH4. The calculated minimum energy geometry of LT Mg2NiH4 is close to that determined from neutron diffraction data, and the NiH4 complex is close to a regular tetrahedron. The enthalpies of the phase change to high temperature (HT) pseudo-cubic Mg2NiH4 and of hydrogen absorption by Mg2Ni are calculated and compared with experimental values. LT Mg2NiH4 is found to be a semiconductor with an indirect band gap of 1.4 eV. The optical dielectric function of LT Mg2NiH4 differs somewhat from that of the HT phase. A calculated thin film transmittance spectrum is consistent with an experimental spectrum.

1.
J. J.
Reilly
and
R. H.
Wiswall
,
Inorg. Chem.
7
,
2254
(
1968
).
2.
T. J.
Richardson
,
J. L.
Slack
,
R. D.
Armitage
,
R.
Kostecki
,
B.
Farangis
, and
M. D.
Rubin
,
Appl. Phys. Lett.
78
,
3047
(
2001
).
3.
Z.
Gavra
,
M. H.
Mintz
,
G.
Kimmel
, and
Z.
Hadari
,
Inorg. Chem.
18
,
3595
(
1979
).
4.
M.
Gupta
,
E.
Belin
, and
L.
Schlapbach
,
J. Less-Common Met.
103
,
389
(
1984
).
5.
P.
Lindberg
,
D.
Noreus
,
M.
Blomberg
, and
P.
Siegbahn
,
J. Chem. Phys.
85
,
4530
(
1986
).
6.
N.
Huang
,
Q.
Wang
,
J.
Wu
, and
J.
Tang
,
Z. Phys. Chem., Neue Folge
163
,
S207
(
1989
).
7.
G. N.
Garcia
,
J. P.
Abriata
, and
J. O.
Sofo
,
Phys. Rev. B
59
,
11746
(
1999
).
8.
J.
Schefer
,
F.
Fischer
,
W.
Hälg
,
F.
Stucki
,
L.
Schlapbach
,
J. J.
Didisheim
,
K.
Yvon
, and
A. F.
Andresen
,
J. Less-Common Met.
74
,
65
(
1980
).
9.
K.
Yvon
,
J.
Schefer
, and
F.
Stucki
,
Inorg. Chem.
20
,
2776
(
1981
).
10.
P.
Zolliker
and
K.
Yvon
,
Mater. Res. Bull.
21
,
415
(
1986
).
11.
P. Blaha, K. Schwarz, and J. Luitz, WIEN97, ©Vienna University of Technology, Vienna 1997. Improved and updated Unix version of WIEN;
P.
Blaha
,
K.
Schwarz
,
P.
Sorantin
, and
S. B.
Trickey
,
Comput. Phys. Commun.
59
,
399
(
1990
).
12.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
864
(
1964
).
13.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
14.
N.
Trouillier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
15.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
16.
M. P.
Teter
,
M. C.
Payne
, and
D. C.
Allan
,
Phys. Rev. B
40
,
12255
(
1989
).
17.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran (Cambridge University, New York, 1992).
18.
P.
Selvam
,
B.
Viswanthan
, and
V.
Srinivasan
,
J. Electron Spectrosc. Relat. Phenom.
46
,
357
(
1988
).
19.
S.
Froyen
,
Phys. Rev. B
39
,
3168
(
1989
).
20.
P. E.
Blochl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
(
1994
).
21.
P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 1996), pp. 242–255.
22.
For information on PEtot, see: http://www.nersc.gov/∼linwang/PEtot/PEtot.html.
23.
A.
Canning
,
L. W.
Wang
,
A.
Williamson
, and
A.
Zunger
,
J. Comput. Phys.
160
,
29
(
2000
).
24.
P.
Zolliker
,
K.
Yvon
,
J. D.
Jorgensen
, and
F. J.
Rotella
,
Inorg. Chem.
25
,
3590
(
1986
).
25.
J. L.
Soubeyroux
,
D.
Fruchart
,
A.
Mikou
,
M.
Pezat
, and
B.
Darriet
,
Mater. Res. Bull.
19
,
895
(
1984
).
26.
K.
Zeng
,
T.
Klassen
,
W.
Oelerich
, and
R.
Bormann
,
J. Alloys Compd.
283
,
213
(
1999
).
27.
D.
Noreus
and
L. G.
Olsson
,
J. Chem. Phys.
78
,
2419
(
1983
).
28.
D.
Lupu
,
R.
Sarbu
, and
A.
Biris
,
Int. J. Hydrogen Energy
12
,
425
(
1987
).
29.
D.
Lupu
,
R.
Grecu
, and
S. I.
Farcas
,
Z. Phys. Chem. (Munich)
181
,
143
(
1993
).
30.
Y.
Fujita
,
M.
Yamaguchi
, and
I.
Yamamoto
,
Z. Phys. Chem. (Munich)
163
,
633
(
1989
).
31.
J. Sofo (personal communication).
This content is only available via PDF.
You do not currently have access to this content.