21.4% efficient rear-contacted cells (RCC) with interdigitated contact grids processed at the Fraunhofer ISE on 1.25 Ω cm float-zone (FZ) silicon are analyzed in detail. The comprehensive description does not only include a two-dimensional numerical device simulation, but also a detailed analysis of the optical carrier generation using optical ray tracing and determination of the losses due to distributed metal resistance and perimeter currents employing circuit simulation. Bulk and surface recombination losses are separated, combining carrier lifetime and open-circuit voltage measurements with numerical device simulation. The interface surface recombination velocity of the thermally oxidized emitter covering the front surface is deduced to be 1500 cm/s and the bulk diffusion length within the 1.25 Ω cm FZ silicon base is 1200 μm. Despite this excellent bulk diffusion length, the simulations reveal that at a maximum power point 80% of the total recombination is due to Shockley–Read–Hall recombination in the base. It was determined that losses due to the distributed metal resistance within the contact grid (including nongeneration losses) caused an fill factor decrease of 1% absolute. Loss currents flowing out of the cell perimeter caused an additional fill factor loss of 1.5% absolute. It was predicted that changing the surface concentration of the front and rear emitter diffusion from 5×1018 to 1×1018cm−3, while keeping the sheet resistance constant, effected a relative improvement of 3% in the efficiency of the RCC structure. In fact, this modification has lead to an increase in the realized cell efficiency from 21.4% to 22.1% (VOC=697.6 mV, JSC=39.8 mA/cm2, and FF=79.4%), i.e., a relative improvement of 3.3%. This cell has an efficiency of 18.6% (VOC=696.5 mV, JSC=33.9 mA/cm2, and FF=78.8%) if illuminated from the rear side.

1.
R. N. Hall and T. J. Soltys, Polka-dot Solar Cell, 14th IEEE Photovoltaic Specialist Conference (IEEE, New York, 1980), pp. 550–553. pp. 550–553.
2.
J. M. Gee, W. K. Schubert, and P. A. Basore, Emitter Wrap-Through solar Cell (IEEE, New York, 1993), pp. 265–270.
3.
R. J. Schwartz and M. D. Lammert, in Silicon Solar Cells for High Concentration Applications (Washington, DC, 1975), pp. 350–351.
4.
M. D.
Lammert
and
R. J.
Schwartz
,
IEEE Trans. Electron Devices
24
,
337
(
1977
).
5.
R. J.
Schwartz
,
Sol. Cells
6
,
17
(
1982
).
6.
R. M.
Swanson
,
Sol. Cells
17
,
85
(
1986
).
7.
R. A.
Sinton
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
34
,
2116
(
1987
).
8.
R. R. King, R. A. Sinton, and R. M. Swanson, Front and Back Surface Fields for Point-Contact Solar Cells (Las Vegas, Nevada, 1988), pp. 538–544.
9.
P.
Verlinden
,
R. A.
Sinton
, and
R. M.
Swanson
,
Int. J. Solar Energy
6
,
347
(
1988
).
10.
R. A.
Sinton
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
37
,
348
(
1990
).
11.
K. Matsukuma, H. Yagi, Y. Kida, T. Takahashi, K. Nishinoiri, T. Warabisako, T. Uematsu, and K. Morita, Exact Analytical Simulation for Large-Area Simplified Back Side-Contact Silicon Solar Cells (Kyoto, Japan, 1990), pp. 505–508.
12.
R. R. King, R. A. Sinton, and R. M. Swanson, Report No. SAND91-7003 (1991).
13.
R. A. Sinton, P. J. Verlinden, R. A. Crane, R. M. Swanson, C. Tilford, J. Perkins, and K. Garrison, Large-area 21% Efficient Si Solar Cells (IEEE, New York, 1993), pp. 157–161.
14.
P. J.
Verlinden
,
R. M.
Swanson
, and
R. A.
Crane
,
Prog. Photovoltaics
2
,
143
(
1994
).
15.
R. A. Sinton, P. J. Verlinden, R. M. Swanson, R. A. Crane, K. Wickham, and J. Perkins, Improvements in Si Back Side-Contact Solar Cells for High-Value One-Sun Applications, Proceedings of the 13th European Photovoltaic Solar Energy Conference, edited by W. Freiesleben, W. Palz, H. A. Ossenbrink, and P. Helm (H.S. Stephens & Associates, Bedford, UK, 1995).
16.
P. J. Verlinden, R. A. Sinton, K. Wickham, R. A. Crane, and R. M. Swanson, in Backside-Contact Silicon Solar Cells with Improved Efficiency for the ’96 World Solar Challenge, Proceedings of the 14th European Photovoltaic Solar Energy Conference, edited by H. A. Ossenbrink, P. Helm, H. Ehman (H.S. Stephens & Associates, Bedford, UK, 1997).
17.
S. W. Glunz, J. Knobloch, and W. Wettling, Emitter Dark Saturation Currents of High Efficiency Solar Cells with Inverted Pyramids, Proceedings of the 13th European Photovoltaic Solar Energy Conference (Nice, France) edited by W. Freiesleben, W. Palz, H. A. Ossenbrink, and P. Helm (H.S. Stephans & Associates, Bedford, UK, 1995).
18.
S. W. Glunz, J. Knobloch, C. Hebling, and W. Wettling, in The Range of High-Efficiency Silicon Solar Cells Fabricated at Fraunhofer ISE (IEEE, New York, 1997), p. 231–234.
19.
J. O. Schumacher, S. Sterk, B. Wagner, and W. Warta, Quantum Efficiency Analysis of High Efficiency Solar Cells with Textured Surfaces, Proceedings of the 13th European Photovoltaic Solar Energy Conference (Nice, 1995) edited by W. Freiesleben, W. Palz, H. A. Ossenbrink, and P. Helm (H.S. Stephens &Associates, Bedford, UK, 1995).
20.
J. O. Schumacher, J. Dicker, S. Glunz, C. Hebling, J. Knobloch, W. Wara, and W. Wettling, Characterization of Silicon Solar Cells with Interdigitated Contacts (IEEE, New York, 1997), pp. 71–74.
21.
ISE-TCAD, 6.0.5 ed. (ISE Integrated Systems Engineering, Zurich, 1999).
22.
G. Heiser, P. P. Altermatt, and J. Litsios, in Simulation of Semiconductor Devices and Processes, edited by H. Ryssel and P. Pichler (Springer, New York, 1995), Vol. 6, pp. 348–351.
23.
P. P.
Altermatt
,
G.
Heiser
,
A. G.
Aberle
,
A.
Wang
,
J.
Zhao
,
S. J.
Robinson
,
S.
Bowden
, and
M. A.
Green
,
Prog. Photovoltaics
4
,
399
(
1996
).
24.
H.
Ohtsuka
,
Y.
Ohkura
,
T.
Uematsu
, and
T.
Warabisako
,
Prog. Photovoltaics
2
,
275
(
1994
).
25.
J. O.
Schumacher
,
P. P.
Altermatt
,
G.
Heiser
, and
A. G.
Aberle
,
Sol. Energy Mater. Sol. Cells
65
,
95
(
2001
).
26.
J. Dicker, J. O. Schumacher, S. W. Glunz, and W. Warta, Characterization of High-Efficiency Silicon Solar Cells with Rear Side Contacts, Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion (Vienna, 1998) edited by J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehman, and E. D. Dunlop (Joint Research Centre, European Commission, Ispra, Italy, 1998) 1999.
27.
S. W.
Glunz
,
D.
Biro
,
S.
Rein
, and
W.
Wartz
,
J. Appl. Phys.
86
,
683
(
1999
).
28.
R.
Brendel
,
Appl. Phys. A: Mater. Sci. Process.
60
,
523
(
1995
).
29.
A. G.
Aberle
J.
Schmidt
, and
R.
Brendel
,
J. Appl. Phys.
82
,
4938
(
1997
).
30.
P. P.
Altermatt
,
G.
Heiser
,
D.
Ximing
,
J.
Jurgens
,
A. G.
Aberle
,
S. J.
Robinson
,
T.
Young
,
S. R.
Wenham
, and
M. A.
Green
,
J. Appl. Phys.
80
,
3574
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.