Domain structures of unpoled as well as poled (along [001]- and [110]-direction) Pb(Zn1/3Nb2/3)O3 (PZN)-8% PbTiO3 (PT) and Pb(Mg1/3Nb2/3)O3 (PMN)-29% PT single crystals have been investigated by scanning force microscopy (SFM) in the piezoresponse mode, at room temperature. Antiparallel domain structures have been detected mostly in unpoled crystals of both materials, with a fingerprint pattern in (001)-oriented PZN-8% PT crystal. The ferroelastic domain wall has been identified in poled (110)-oriented PZN-8% PT crystal. “Writing” of ferroelectric domains has been performed by applying a dc voltage to the SFM tip. Local re-poling has been observed for all unpoled as well as for poled (001)-oriented crystals at the voltage ±60 V. Local electrical switching was successful in poled (110)-oriented PMN-29% PT at higher voltage (±120 V) but was not successful in poled (110)-oriented PZN-8% PT crystal. Domain-engineered crystals poled in [110]-direction seem to exhibit more stable (in the sense of local re-poling properties) domain arrangement. Hysteretic d(E) dependencies were observed by local application of an ac voltage.

1.
J.
Kuwata
,
K.
Uchino
, and
S.
Nomura
,
Jpn. J. Appl. Phys., Part 1
21
,
1298
(
1982
).
2.
S. W.
Choi
,
T. R.
Shrout
,
S. J.
Jang
, and
A. S.
Bhalla
,
Ferroelectrics
100
,
29
(
1989
).
3.
S. E.
Park
and
T. R.
Shrout
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1140
(
1997
).
4.
S. E.
Park
and
T. R.
Shrout
,
J. Appl. Phys.
82
,
1804
(
1997
).
5.
J.
Yin
,
B.
Jiang
, and
W.
Cao
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
285
(
2000
).
6.
Z. W.
Yin
,
H. S.
Luo
,
P. C.
Wang
, and
G. S.
Xu
,
Ferroelectrics
229
,
207
(
1999
).
7.
S.
Saitoh
,
T.
Kobayashi
,
K.
Harada
,
S.
Shimanuki
, and
Y.
Yamashita
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
1071
(
1998
).
8.
S.
Saitoh
,
T.
Kobayashi
,
K.
Harada
,
S.
Shimanuki
, and
Y.
Yamashita
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
152
(
1999
).
9.
J.
Fousek
,
D. B.
Litvin
, and
L. E.
Cross
,
J. Phys.: Condens. Matter
13
,
33
(
2001
).
10.
U.
Belegundu
,
X. H.
Du
,
L. E.
Cross
, and
K.
Uchino
,
Ferroelectrics
221
,
67
(
1999
).
11.
S.
Wada
,
S.-E.
Park
,
L. E.
Cross
, and
T. R.
Shrout
,
Ferroelectrics
221
,
147
(
1999
).
12.
Z. G.
Ye
,
M.
Dong
, and
L.
Zhang
,
Ferroelectrics
229
,
223
(
1999
).
13.
J.
Yin
and
W.
Cao
,
J. Appl. Phys.
87
,
7438
(
2000
).
14.
K.
Fujishiro
,
R.
Vlokh
,
Y.
Uesu
,
Y.
Yamada
,
J.-M.
Kiat
,
B.
Dkhil
, and
Y.
Yamashita
,
Jpn. J. Appl. Phys., Part 1
37
,
5246
(
1998
).
15.
Z. G.
Ye
and
M.
Dong
,
J. Appl. Phys.
87
,
2312
(
2000
).
16.
H.
Yu
,
V.
Gopalan
,
J.
Sindel
, and
C. A.
Randall
,
J. Appl. Phys.
89
,
561
(
2001
).
17.
P.
Lehnen
,
J.
Dec
, and
W.
Kleemann
,
J. Phys. D: Appl. Phys.
33
,
1932
(
2000
).
18.
L. M.
Eng
,
M.
Bammerlin
,
C.
Loppacher
,
M.
Guggisberg
,
R.
Bennewitz
,
R.
Lüthi
,
E.
Meyer
,
T.
Huser
,
H.
Heinzelmann
, and
H.-J.
Güntherodt
,
Ferroelectrics
222
,
153
(
1999
).
19.
M.
Abplanalp
,
L. M.
Eng
, and
P.
Günter
,
Appl. Phys. A: Mater. Sci. Process.
66
,
S231
(
1998
).
20.
J.
Hong
,
S.-I.
Park
,
K.
Nho
,
S.-I.
Kwun
, and
Z.-G.
Khim
,
Ferroelectrics
229
,
131
(
1999
).
21.
L. M.
Eng
,
Abplanalp
, and
P.
Günter
,
Appl. Phys. A: Mater. Sci. Process.
66
,
S679
(
1998
).
22.
P.
Güthner
and
K.
Dransfeld
,
Appl. Phys. Lett.
61
,
1137
(
1992
).
23.
A.
Gruverman
,
O.
Kolosov
,
J.
Hatano
,
K.
Takahashi
, and
H.
Tokumoto
,
J. Vac. Sci. Technol. B
13
,
1095
(
1995
).
24.
J.
Fousek
and
V.
Janovec
,
J. Appl. Phys.
40
,
135
(
1969
).
25.
M.
Abplanalp
,
D.
Barošová
,
P.
Bridenbaugh
,
J.
Erhart
,
J.
Fousek
,
P.
Günter
,
J.
Nosek
, and
M.
Šulc
,
Solid State Commun.
119
,
7
(
2001
).
26.
K.
Takemura
,
M.
Ozgul
,
V.
Bornand
,
S.
Trolier-McKinstry
, and
C. A.
Randall
,
J. Appl. Phys.
88
,
7272
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.