We study the dynamics of dilute vortices in c-axis oriented Y-123, Hg-, and Tl-1212 thin films, as well as a-axis oriented Hg-1212 thin films. Results on the Hg- and Tl-1212 thin films indicate that dislocation-mediated plastic flux creep of single vortices dominates at low temperatures and fields. As the temperature (or the field) is increased, increasing vortex–vortex interactions promote a collective behavior, characterized by elastic creep with a nonzero μ exponent. In some samples, effects of thermally assisted quantum creep are visible up to 45 K. In Y-123 thin films, creep is collective down to the lowest temperatures and fields investigated, while quantum creep persists up to 10–11 K.

1.
D. R.
Nelson
,
Phys. Rev. Lett.
60
,
1973
(
1988
).
2.
D. S.
Fisher
,
M. P.
Fischer
, and
D. A.
Huse
,
Phys. Rev. B
43
,
130
(
1991
).
3.
L.
Xing
and
Z.
Tešanovic
,
Phys. Rev. Lett.
65
,
794
(
1990
).
4.
S.
Ryu
et al.,
Phys. Rev. Lett.
68
,
710
(
1992
).
5.
M. J. P.
Gingras
and
D. A.
Huse
,
Phys. Rev. B
53
,
15193
(
1996
).
6.
G.
Blatter
and
V.
Geshkenbein
,
Phys. Rev. Lett.
77
,
4958
(
1996
).
7.
K.
Ghosh
et al.,
Phys. Rev. Lett.
76
,
4600
(
1996
);
S. S.
Banerjee
et al.,
Physica C
308
,
25
(
1998
);
S. S.
Banerjee
et al.,
Phys. Rev. B
62
,
11838
(
2000
);
D.
Pal
et al.,
Phys. Rev. B
62
,
6699
(
2000
).
8.
H. A.
Radovan
,
H. H.
Wen
, and
P.
Ziemann
,
Eur. Phys. J. B
7
,
533
(
1999
).
9.
B. J.
Jönsson
et al.
,
Phys. Rev. B
58
,
5862
(
1998
);
J. J.
Åkerman
et al.,
Phys. Rev. B
64
,
024526
(
2001
);
J. J.
Åkerman
,
Phys. Rev. B
64
,
094509
(
2001
);
J. J.
Åkerman
,
Phys. Rev. B
64
,
184520
(
2001
);
B. J.
Jönnson-Åkerman
,
Phys. Rev. B
60
,
14913
(
1999
).
10.
M. P.
Siegal
et al.,
IEEE Trans. Appl. Supercond.
7
,
1881
(
1997
).
11.
S. H.
Yun
et al.,
J. Mater. Res.
14
,
3181
(
1999
).
12.
B. J.
Jönsson
et al.,
IEEE Trans. Appl. Supercond.
9
,
2639
(
1999
).
13.
M. V.
Feigel’man
et al.,
Phys. Rev. Lett.
63
,
2303
(
1989
).
14.
G.
Blatter
et al.,
Rev. Mod. Phys.
66
,
1125
(
1994
).
15.
H. G.
Schnack
et al.,
Physica C
197
,
337
(
1992
).
16.
Y.
Yeshurun
et al.,
Rev. Mod. Phys.
68
,
911
(
1996
).
17.
C. J.
van der Beek
et al.,
Physica C
195
,
307
(
1992
).
18.
M.
Nideröst
et al.,
Phys. Rev. B
53
,
9286
(
1996
).
19.
H. H.
Wen
et al.,
Phys. Rev. B
54
,
1386
(
1996
).
20.
L.
Ammor
et al.,
Physica C
273
,
281
(
1997
).
21.
H. A.
Radovan
,
H. H.
Wen
, and
P.
Ziemann
,
Eur. Phys. J. B
7
,
533
(
1999
).
22.
A. C.
Mota
et al.,
Phys. Scr.
37
,
823
(
1988
).
23.
A. J. J.
van Dalen
et al.,
Phys. Rev. B
54
,
1366
(
1996
).
24.
H. H.
Wen
et al.,
Phys. Rev. Lett.
79
,
1559
(
1997
).
25.
J. R.
Thompson
et al.,
Phys. Rev. B
44
,
R458
(
1991
).
26.
L.
Civale
et al.,
Phys. Rev. B
50
,
7188
(
1994
).
27.
J.
Pearl
,
Appl. Phys. Lett.
5
,
65
(
1964
).
28.
M.
Nikolo
et al.,
Phys. Rev. B
45
,
5641
(
1992
).
29.
F.
Warmont
et al.,
Phys. Rev. B
58
,
132
(
1998
).
30.
J. T.
Kucera
et al.,
Phys. Rev. B
46
,
11
004
(
1992
).
31.
R.
Puzniak
et al.,
Physica C
21
,
233
(
1994
).
32.
L.
Krusin-Elbaum
et al.,
Nature (London)
373
,
679
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.