The temperature-dependent capacitance–voltage characteristics of two stacked InAs/GaAs quantum dot diode were investigated. The capacitance discontinuities observed are attributed to charge storage in the InAs quantum dots. The average storage electrons at each InAs quantum dot thus obtained are two and three electrons at room temperature and at temperature below 100 K, respectively. In the intermediate temperature range from 100 to 250 K, fractional charge occupation is observed in each dot. When the measurement frequency is lowered from 800 to 80 kHz, the capacitance turns into a negative value under low biases which indicates the dominance of the inductance at lower frequency.
REFERENCES
1.
T.
Cho
, J.-W.
Kim
, J.-E.
Oh
, and S.
Hong
, Tech. Dig. - Int. Electron Devices Meet.
1998
, 441
. 2.
S. Y.
Wang
, S. D.
Lin
, H. W.
Wu
, and C. P.
Lee
, Appl. Phys. Lett.
78
, 1023
(2001
).3.
J.
Phillips
, P.
Bhattacharya
, S. W.
Kennerly
, D. W.
Beekman
, and M.
Dutta
, IEEE J. Quantum Electron.
35
, 936
(1999
).4.
D.
Pan
, E.
Towe
, and S.
Kennerly
, Appl. Phys. Lett.
75
, 2719
(1999
).5.
S.-F.
Tang
, S.-Y.
Lin
, S.-C.
Lee
, C. H.
Kuan
, and Y.-T.
Cherng
, Tech. Dig. - Int. Electron Devices Meet.
2000
, 601
. 6.
S.-F.
Tang
, S.-Y.
Lin
, and S.-C.
Lee
, Appl. Phys. Lett.
78
, 2428
(2001
).7.
S.-Y.
Lin
, Y.-R.
Tsai
, and S.-C.
Lee
, Appl. Phys. Lett.
78
, 2784
(2001
).8.
D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Germany, 1999), p. 297.
9.
10.
11.
J. J.
Finley
, M.
Skalitz
, M.
Arzberger
, A.
Zrenner
, G.
Böhm
, and G.
Abstreiter
, Appl. Phys. Lett.
73
, 2618
(1998
).12.
M. C.
Bödefeld
, R. J.
Warburton
, K.
Karrai
, J. P.
Kotthaus
, G.
Medeiros-Ribeiro
, and P. M.
Petroff
, Appl. Phys. Lett.
74
, 1839
(1999
).13.
T.
Lundstrim
, W.
Schoenfeld
, H.
Lee
, and P. M.
Petroff
, Appl. Phys. Lett.
74
, 1839
(1999
).14.
V. V. Mitin, V. A. Kochelap, and M. A. Stroscio, Quantum Heterostructures (Microelectronics and Optoelectronics) (Cambridge University Press, New York, 1999).
15.
S. K.
Jung
, C. K.
Hyon
, J. H.
Park
, S. W.
Hwang
, D.
Ahn
, M. H.
Son
, B. D.
Min
, Y.
Kim
, and E. K.
Kim
, Phys. Lett.
75
, 8
(1999
).16.
R.
Wetzler
, A.
Wacker
, E.
Schöll
, C. M. A.
Kapteyn
, R.
Heitz
, and D.
Bimberg
, Appl. Phys. Lett.
77
, 1671
(2000
).17.
P. N.
Brounkov
, A.
Polimeni
, S. T.
Stoddart
, M.
Henini
, L.
Eaves
, P. C.
Main
, A. R.
Kovsh
, Yu. G.
Mushikhin
, and S. G.
Konnikov
, Appl. Phys. Lett.
73
, 1092
(1998
).18.
A.
Haggag
and K.
Hess
, IEEE Trans. Electron Devices
47
, 1624
(2000
).19.
M. Shur, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 152.
20.
S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 89.
21.
M. Shur, in Ref. 19, p. 154.
22.
23.
M.
Ershov
, H. C.
Liu
, L.
Li
, Buchanan
, Z. R.
Wasilewski
, and K.
Jonscher
, IEEE Trans. Electron Devices
45
, 2196
(1998
).24.
H. W.
Li
and T. H.
Wang
, Appl. Phys. A: Mater. Sci. Process.
, 1007
(2001
).
This content is only available via PDF.
© 2002 American Institute of Physics.
2002
American Institute of Physics
You do not currently have access to this content.