The precipitation and dissolution of copper impurities at oxygen precipitates and stacking faults in silicon were studied using thermal budgets commensurate with standard integrated circuit processing. Additionally, in order to develop a better understanding of the dissolution process, we have obtained results on the chemical state of the copper precipitates. The goal of this work was to determine the feasibility of removing and maintaining copper impurities away from the active device region of an integrated circuit device by use of oxygen precipitates and stacking faults in the bulk of the material. Based on our results, we provide a basis for a predictive understanding of copper precipitation and dissolution in silicon and we discuss the feasibility of copper impurity control in silicon integrated circuit devices.

1.
L. K. J.
Vandamme
,
E. P.
Vandamme
, and
J. J.
Dobbelsteen
,
Solid-State Electron.
41
,
901
(
1997
).
2.
H. H.
Busta
and
H. A.
Waggener
,
J. Electrochem. Soc.
124
,
1424
(
1977
).
3.
W. C. McColgin, J. P. Lavine, and C. V. Stancampiano, in Proceedings of the Materials Research Society Symposium: Defects in Electronic Materials II, San Francisco, 1997 (Materials Research Society, Pittsburgh, 1997), pp. 187–92.
4.
R. F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley, Reading, MA, 1996).
5.
K.
Honda
,
T.
Nakanishi
,
A.
Ohsawa
, and
N.
Toyokura
,
J. Appl. Phys.
62
,
1960
(
1987
).
6.
T.
Kitano
,
J. Electron. Mater.
21
,
1027
(
1992
).
7.
J.
Wong-Leung
,
D. J.
Eaglesham
,
J.
Sapjeta
,
D. C.
Jacobson
,
J. M.
Poate
, and
J. S.
Williams
,
J. Appl. Phys.
83
,
580
(
1998
).
8.
A.
Ohsawa
,
K.
Honda
, and
N.
Toyokura
,
J. Electrochem. Soc.
131
,
2964
(
1984
).
9.
K.
Honda
,
A.
Ohsawa
, and
T.
Nakanishi
,
J. Electrochem. Soc.
142
,
3486
(
1995
).
10.
W. B. Henley, L. Jastrzebski, and N. F. Haddad, in Proceedings of the Materials Research Society Symposium: Defect Engineering in Semiconductor Growth, Processing and Device Technology, Pittsburgh, PA, 1992 (Materials Research Society, Pittsburgh, 1992), p. 993.
11.
E. P.
Burte
and
W.
Aderhold
,
Solid-State Electron.
41
,
1021
(
1997
).
12.
W. K.
Tice
and
T. Y.
Tan
,
Mater. Res. Soc. Symp. Proc.
2
,
367
(
1981
).
13.
D.
Gilles
,
E. R.
Weber
, and
S. K.
Hahn
,
Phys. Rev. Lett.
64
,
196
(
1990
).
14.
J. N.
Burghartz
,
D. C.
Edelstein
,
K. A.
Jenkiin
, and
Y. H.
Kwark
,
IEEE Trans. Microwave Theory Tech.
45
,
1961
(
1997
).
15.
L.
Geppert
,
IEEE Spectrum
36
,
52
6
(
1999
).
16.
E. R.
Weber
,
Appl. Phys. A: Mater. Sci. Process.
30
,
1
(
1983
).
17.
T. Heiser, C. Brochard, and M. Swaanen, in Proceedings of the Materials Research Society Symposium: Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics, San Francisco, 2000 (Materials Research Society, Pittsburgh, 2000), pp. 1–6.
18.
B.
Shen
,
T.
Sekiguchi
,
J.
Jablonski
, and
K.
Sumino
,
J. Appl. Phys.
76
,
4540
(
1994
).
19.
S. Ogushi, N. Reilly, S. Sadamitsu, Y. Koike, and M. Sano, in Proceedings of the Materials Research Symposium: Society Symposium: Defect and Impurity Engineered Semiconductors II, San Francisco, 1998 (Materials Research Society, Pittsburgh, 1998), pp. 227–32.
20.
H.
Hieslmair
,
A. A.
Istratov
,
S. A.
McHugo
,
C.
Flink
,
T.
Heiser
, and
E. R.
Weber
,
Appl. Phys. Lett.
72
,
1460
2
(
1998
).
21.
J. H.
Underwood
,
A. C.
Thompson
,
Y.
Wu
, and
R. D.
Giauque
,
Nucl. Instrum. Methods Phys. Res. A
266
,
318
(
1988
).
22.
S. A. McHugo, A. C. Thompson, and H. Padmore, in Proceedings of the Materials Research Society Symposium: Defect and Impurity Engineered Semiconductors and Devices II, San Francisco, CA, 1998 (Materials Research Society, Pittsburgh, 1998), pp. 589–94.
23.
S. A.
McHugo
,
A. C.
Thompson
,
C.
Flink
,
E. R.
Weber
,
G.
Lamble
,
R.
Gunion
,
A.
MacDowell
,
R.
Celstre
,
H.
Padmore
, and
Z.
Hussain
,
J. Cryst. Growth
210
,
395
(
2000
).
24.
Z. Cai, B. Lai, W. Yun, P. Ilinski, D. Legnini, J. Maser, and W. Rodrigues, in Proceedings of the Sixth International Conference on X-Ray Microscopy, 2000 (AIP, New York, 2000), pp. 472–477.
25.
P. A.
Pella
,
D. E.
Newbury
,
E. B.
Steel
, and
D. H.
Blackburn
,
Anal. Chem.
56
,
1133
(
1986
).
26.
T.
Heiser
,
S.
McHugo
,
H.
Hieslmair
, and
E. R.
Weber
,
Appl. Phys. Lett.
70
,
3576
(
1997
).
27.
N.
Gay
and
S.
Martinuzzi
,
Appl. Phys. Lett.
70
,
2568
(
1997
).
28.
M. D. d.
Coteau
,
P. R.
Wilshaw
, and
R.
Falster
,
Phys. Status Solidi A
117
,
403
(
1990
).
29.
S. A.
McHugo
and
C.
Flink
,
Appl. Phys. Lett.
77
,
3598
(
2000
).
30.
S. A.
McHugo
,
Appl. Phys. Lett.
71
,
1984
(
1997
).
31.
B.
Shen
,
T.
Sekiguchi
,
R.
Zhang
,
Y.
Shi
,
H.
Shi
,
K.
Yang
,
Y.
Zheng
, and
K.
Sumino
,
Jpn. J. Appl. Phys.
35
,
3301
(
1996
).
32.
S. M.
Myers
and
D. M.
Follstaedt
,
J. Appl. Phys.
79
,
1337
(
1996
).
33.
M.
Seibt
and
K.
Graff
,
J. Appl. Phys.
63
,
4444
(
1988
).
34.
R. R.
Kola
,
G. A.
Rozgonyi
,
J.
Li
,
W. B.
Rogers
,
T. Y.
Tan
,
K. E.
Bean
, and
K.
Lindberg
,
Appl. Phys. Lett.
55
,
2108
(
1989
).
35.
E.
Nes
and
J.
Washburn
,
J. Appl. Phys.
44
,
3682
(
1973
).
36.
E.
Nes
,
Acta Metall.
22
,
81
(
1978
).
37.
J. K.
Solberg
and
E.
Nes
,
J. Mater. Sci.
13
,
2233
(
1978
).
38.
K. J.
Solberg
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
34
,
684
(
1978
).
39.
H.
Alexander
,
C.
Kisielowski-Kemmerich
, and
E. R.
Weber
,
Physica B
B116
,
583
(
1983
).
40.
H. B.
Aaron
and
G. R.
Kotler
,
Metall. Trans.
2
,
393
(
1971
).
41.
K.
Sumino
,
Phys. Status Solidi A
171
,
111
(
1999
).
42.
CRC Handbook of Chemistry and Physics, 79th ed. (CRC, New York, 1999).
43.
M. Seibt, in Proceedings of the 6th International Symposium on Silicon Materials Science and Technology: Semiconductor 1990 (The Electrochemical Society, New York, 1990), p. 663.
44.
W. K.
Tice
and
T. Y.
Tan
,
Appl. Phys. Lett.
28
,
564
(
1976
).
45.
S. A.
McHugo
, et al.,
J. Appl. Phys.
89
,
4282
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.