Accurate modeling of impact ionization is a critical issue for deep submicron devices. All established analytical models for the distribution function based on the local electric field or on the local average carrier energy give rather poor results. Therefore, theoretically sound microscopic scattering rates cannot be properly transformed into accurate macroscopic models. We show that by accounting for the average square energy an accurate analytical description of the distribution function can be given. Together with a proper band structure model the analytical distribution function can then be used to evaluate microscopic models in a macroscopic device simulator. The present model is accurate for bulk and sub 100 nm feature size devices and involves only local quantities, which makes it a good choice for inclusion in conventional device simulators.

1.
P.
Scrobohaci
and
T.-W.
Tang
,
IEEE Trans. Electron Devices
41
,
1197
(
1994
).
2.
J.-G.
Ahn
,
C.-S.
Yao
,
Y.-J.
Park
,
H.-S.
Min
, and
R.
Dutton
,
IEEE Electron Device Lett.
15
,
348
(
1994
).
3.
K.
Sonoda
,
M.
Yamaji
,
K.
Taniguchi
,
C.
Hamaguchi
, and
S.
Dunham
,
J. Appl. Phys.
80
,
5444
(
1996
).
4.
T. Grasser, H. Kosina, and S. Selberherr, Conference Proceedings on Simulation of Semiconductor Devices and Processes, Athens, Greece, September 2001 (Springer, Wien, 2001), pp. 46–49.
5.
B.
Geurts
,
M.
Nekovee
,
H.
Boots
, and
M. F. H.
Schuurmans
,
J. Appl. Phys.
59
,
1743
(
1991
).
6.
S.
Liotta
and
H.
Struchtrup
,
Solid-State Electron.
44
,
95
(
2000
).
7.
M.
Vecchi
and
L.
Reyna
,
Solid-State Electron.
37
,
1705
(
1994
).
8.
T.
Grasser
,
H.
Kosina
,
M
,
Gritsch
, and
S.
Selberherr
,
J. Appl. Phys.
90
,
2389
(
2001
).
9.
Y.
Apanovich
,
E.
Lyumkis
,
B.
Polsky
,
A.
Shur
, and
P.
Blakey
,
IEEE Trans. comput.-Aided Des.
13
,
702
(
1994
).
10.
K.
Souissi
,
F.
Odeh
,
H.
Tang
,
A.
Gnudi
, and
P.
Lu
,
IEEE Trans. Electron Devices
40
,
1501
(
1993
).
11.
T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr, in Proceedings of the 4th International Conference on Modeling and Simulations of Microsystems, Hilton Head Island, SC, March 2001, pp. 474–477.
12.
K. Sonoda, M. Yamaji, K. Taniguchi, and C. Hamaguchi, in Simulation of Semiconductor Devices and Processes, edited by H. Ryssel and P. Pichler, Wien, Austria (Springer, Wien 1995), Vol. 6, pp. 420–423.
13.
E.
Kane
,
J. Phys. Chem. Solids
1
,
249
(
1957
).
14.
D.
Cassi
and
B.
Riccò
,
IEEE Trans. Electron Devices
37
,
1514
(
1990
).
15.
K.
Hasnat
,
C.-F.
Yeap
,
S.
Jallepalli
,
S.
Hareland
,
W.-K.
Shih
,
V.
Agostinelli
,
A.
Tasch
, and
C.
Maziar
,
IEEE Trans. Electron Devices
ED-44
,
129
(
1997
).
16.
M.
Fischetti
and
S.
Laux
,
Phys. Rev. B
38
,
9721
(
1988
).
17.
W.
Quade
,
E.
Schöll
, and
M.
Rudan
,
Solid-State Electron.
36
,
1493
(
1993
).
18.
W.
Quade
,
M.
Rudan
, and
E.
Schöll
,
IEEE Trans. Comput.-Aided Des.
10
,
1287
(
1991
).
19.
M.
Fischetti
,
S.
Laux
, and
E.
Crabbé
,
J. Appl. Phys.
78
,
1058
(
1995
).
20.
L.
Keldysh
,
Sov. Phys. JETP
21
,
1135
(
1965
).
21.
R.
VanOverstraeten
and
H.
DeMan
,
Solid-State Electron.
13
,
583
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.