Charged closed-cell polypropylene polymer foams are highly sensitive and broadband piezoelectric materials with a quasistatic piezoelectric d33 coefficient about 250 pC/N and a dynamic d33 coefficient of 140 pC/N at 600 kHz. The piezoelectric coefficient is much larger than that of ferroelectric polymers, like polyvinylidene fluoride, and compares favorably with ferroelectric ceramics, such as lead zirconate titanate. The pyroelectric coefficient p3=0.25 μC/m2 K is small in comparison to ferroelectric polymers and ferroelectric ceramics. The low density, small pyroelectric coefficient and high piezoelectric sensitivity make charged polymer foams attractive for a wide range of sensor and transducer applications in acoustics, air-borne ultrasound, medical diagnostics, and nondestructive testing.

1.
W.
Manthey
,
N.
Kroemer
, and
V.
Magori
,
Meas. Sci. Technol.
3
,
249
(
1992
).
2.
J.
Backman
,
J. Audio Eng. Soc.
38
,
364
(
1990
).
3.
R. L.
Clark
and
C. R.
Fuller
,
J. Intell. Mater. Syst. Struct.
2
,
431
(
1991
).
4.
L.
Capineri
,
A. S.
Fiorillo
,
L.
Masotti
, and
S.
Rocchi
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
36
(
1997
).
5.
Q.
Zhang
and
P. A.
Lewin
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1148
(
1997
).
6.
M.
Platte
,
Ferroelectrics
171
,
229
(
1991
).
7.
D. Ricketts, in Transducers for Sonics and Ultrasonics, edited by M. D. Mc Collum, B. F. Hamonic, and O. B. Wilson (Technomic, Lancaster, PA, 1993), pp. 320–325.
8.
R. Y. Ting, in Transducers for Sonics and Ultrasonics, edited by M. D. Mac Collum, B. F. Hamoni, and O. B. Wilson (Technomic, Lancaster, PA, 1993), pp. 3–16.
9.
M.
Latour
,
IEEE Trans. Dielectr. Electr. Insul.
5
,
40
(
1998
).
10.
M. J.
Anderson
,
J. A.
Hill
,
C. M.
Fortunko
,
N. S.
Dogan
, and
R. D.
Moore
,
J. Acoust. Soc. Am.
97
,
262
(
1995
).
11.
L. A.
Whitehead
and
B. J.
Bolleman
,
J. Acoust. Soc. Am.
103
,
389
(
1998
).
12.
P.
Mattila
,
J.
Stor-Pellinen
,
J.
Ignatius
,
J.
Hietanen
, and
M.
Luukkala
,
Meas. Sci. Technol.
11
,
1110
(
2000
).
13.
Ferroelectric Polymers: Chemistry, Physics, and Applications, edited by H. S. Nalwa (Marcel Dekker, New York 1995).
14.
R. Hayakawa and Y. Wada, Advances in Polymer Science (Springer, Berlin, 1973), Vol. XI.
15.
Y.
Wada
and
R.
Hayakawa
,
Jpn. J. Appl. Phys.
15
,
2041
(
1976
).
16.
J.
Dreyfus
and
J.
Lewiner
,
J. Electrochem. Soc.
120
,
1083
(
1973
).
17.
R. W.
Greaves
,
E. P.
Fowler
,
A.
Goodings
, and
D. R.
Lamb
,
J. Mater. Sci.
9
,
1692
(
1974
).
18.
K. Kirjavainen, U.S. Patent No. 4 654 546 (1987);
A.
Savolainen
and
K.
Kirjavainen
,
J. Macromol. Sci., Chem.
A26
,
583
(
1989
).
19.
M.
Paajanen
,
J.
Lekkala
, and
K.
Kirjavainen
,
Sens. Actuators
84
,
95
(
2000
).
20.
G. M.
Sessler
and
J.
Hillenbrand
,
Appl. Phys. Lett.
75
,
3405
(
1999
).
21.
G. S.
Neugschwandtner
,
R.
Schwödiauer
,
M.
Vieytes
,
S.
Bauer-Gogonea
,
S.
Bauer
,
J.
Hillenbrand
,
R.
Kressmann
,
G. M.
Sessler
,
M.
Paajanen
, and
J.
Lekkala
,
Appl. Phys. Lett.
77
,
3827
(
2000
).
22.
G. S.
Neugschwandtner
,
R.
Schwödiauer
,
S.
Bauer-Gogonea
, and
S.
Bauer
,
Appl. Phys. A: Mater. Sci. Process.
70
,
1
(
2000
).
23.
W.
Künstler
,
Z.
Xia
,
T.
Weinhold
,
A.
Pucher
, and
R.
Gerhard-Multhaupt
,
Appl. Phys. A: Mater. Sci. Process.
70
,
5
(
2000
).
24.
R.
Gerhard-Multhaupt
,
W.
Künstler
,
T.
Görne
,
A.
Pucher
,
T.
Weinhold
, and
M.
Seiss
,
IEEE Trans. Dielectr. Electr. Insul.
7
,
480
(
2000
).
25.
R.
Schwödiauer
,
G. S.
Neugschwandtner
,
K.
Schrattbauer
,
M.
Lindner
,
M.
Vieytes
,
S.
Bauer-Gogonea
, and
S.
Bauer
,
IEEE Trans. Dielectr. Electr. Insul.
7
,
578
(
2000
).
26.
R. A.
Anderson
and
R. G.
Kepler
,
Ferroelectrics
32
,
13
(
1981
).
27.
H.
Dvey-Aharon
and
P. L.
Taylor
,
Ferroelectrics
33
,
103
(
1981
).
28.
R.
Schwödiauer
,
G. S.
Neugschwandtner
,
S.
Bauer-Gogonea
, and
S.
Bauer
,
Appl. Phys. Lett.
75
,
3998
(
1999
).
29.
K.
Fukao
and
Y.
Miyamoto
,
Europhys. Lett.
46
,
649
(
1999
).
30.
C.
Bauer
,
R.
Böhmer
,
S.
Moreno-Flores
,
R.
Richert
,
H.
Sillescu
, and
D.
Neher
,
Phys. Rev. E
61
,
1755
(
2000
).
31.
IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987.
32.
H.
Ohigashi
,
J. Appl. Phys.
47
,
949
(
1976
).
33.
K.
Omote
,
H.
Ohigashi
, and
K.
Koga
,
J. Appl. Phys.
81
,
2760
(
1997
).
34.
H.
Ekstein
,
Phys. Rev.
66
,
108
(
1944
).
35.
Electrets, Vol. II, edited by R. Gerhard-Multhaupt (Laplacian, Morgan Hill, 1999).
36.
S.
Bauer
and
A. S.
De Reggi
,
J. Appl. Phys.
80
,
6124
(
1996
).
37.
R. A.
Anderson
,
R. G.
Kepler
, and
R. R.
Lagasse
,
Ferroelectrics
33
,
91
(
1981
).
38.
T.
Furukawa
,
Adv. Colloid Interface Sci.
71–72
,
183
(
1997
).
39.
Y.
Takahashi
,
K.
Hiraoka
, and
T.
Furukawa
,
IEEE Trans. Dielectr. Electr. Insul.
5
,
957
(
1998
).
40.
S.
Bauer
and
B.
Ploss
,
J. Appl. Phys.
68
,
6361
(
1990
).
41.
Ferroelectrics and Related Substances: Oxides, Landolt Börnstein New Series Vol. 16a, edited by K. H. Hellwege and A. M. Hellwege (Springer, Berlin, 1996).
42.
J.
Peltonen
,
M.
Paajanen
, and
J.
Lekkala
,
J. Appl. Phys.
88
,
4789
(
2000
).
43.
R.
Liu
,
Q.
Zhang
, and
L. E.
Cross
,
J. Appl. Polym. Sci.
73
,
2603
(
1999
).
44.
Q. M.
Zhang
,
V.
Bharti
, and
X.
Zhao
,
Science
280
,
2101
(
1998
).
45.
A. T.
Huber
and
L. J.
Gibson
,
J. Mater. Sci.
23
,
3031
(
1988
).
46.
T. A. Osswald and G. Menges, Materials Science of Polymers for Engineers (Hanser, München, 1995).
This content is only available via PDF.
You do not currently have access to this content.