InGaAs/AlAsSb quantum well structures have been grown by molecular beam epitaxy nominally lattice matched to InP substrates and characterized by photoluminescence. Growth interruptions at interfaces combined with selective group V species exposure were used. Our results indicate that interface quality: interface roughness as well as compositional variations involving group V sublattice species intermixing determine the nature of band alignment at heterointerfaces. The type I band lineup with band-edge discontinuity was estimated to be about 1.6 eV for As-terminated samples, which exhibit the lowest compositional fluctuations across heterointerfaces. The photoluminescence linewidths from InGaAs/AlAsSb quantum wells agree with linewidths calculated on the assumption of 1 ML fluctuations in well width. The inhomogeneous nature of the intermixed layers results in a large broadening of the luminescence spectra line shape for samples grown without termination or Sb termination.

1.
T. Akiyama, A. Neogi, H. Yoshida, and O. Wada, Proceedings of the Conference on Lasers and Electro Optics, paper CWF 11, 1999, p. 108.
2.
H.
Yoshida
,
T.
Mozume
,
T.
Nishimura
, and
O.
Wada
,
Electron. Lett.
34
,
913
(
1998
).
3.
N.
Susa
,
IEEE J. Quantum Electron.
32
,
20
(
1996
).
4.
A.
Liu
and
C. Z.
Ning
,
Appl. Phys. Lett.
76
,
1984
(
2000
).
5.
M. S.
Hybertsen
,
Phys. Rev. Lett.
64
,
555
(
1990
).
6.
J. S.
Nelson
,
S. R.
Kurtz
,
L. R.
Dawson
, and
J. A.
Lott
,
Appl. Phys. Lett.
57
,
578
(
1990
).
7.
J. R.
Waldrop
,
G. J.
Sullivan
,
R. W.
Grant
,
E. A.
Kraut
, and
W. A.
Harrison
,
J. Vac. Sci. Technol. B
10
,
1773
(
1992
).
8.
K. R.
Evans
,
C. E.
Stutz
,
P. W.
Yu
, and
C. R.
Wie
,
J. Vac. Sci. Technol. B
8
,
271
(
1990
).
9.
Y.
Nakata
,
Y.
Sugiyama
,
T.
Inata
,
O.
Ueda
,
S.
Sasa
,
S.
Muto
, and
T.
Fujii
,
Mater. Res. Soc. Symp. Proc.
198
,
289
(
1990
).
10.
N.
Georgiev
and
T.
Mozume
,
Appl. Phys. Lett.
75
,
2371
(
1999
).
11.
D. F.
Welch
,
G. W.
Wicks
, and
L. F.
Eastman
,
Appl. Phys. Lett.
46
,
991
(
1985
).
12.
Y. P.
Varshini
,
Physica (Amsterdam)
34
,
149
(
1967
).
13.
W.
Stolz
,
J.
Wagner
, and
K.
Ploog
,
J. Cryst. Growth
81
,
991
(
1987
).
14.
J. R.
Chang
,
Y. K.
Su
,
D. H.
Su
,
D. H.
Jaw
,
H. P.
Shiao
, and
W.
Lin
,
J. Cryst. Growth
203
,
481
(
1999
).
15.
D.
Olego
,
T. Y.
Chang
,
E.
Dilberg
,
E. A.
Caridi
, and
A.
Pinczuk
,
Appl. Phys. Lett.
41
,
476
(
1982
).
16.
T.
Mozume
,
N.
Georgiev
,
H.
Yoshida
,
A.
Neogi
, and
T.
Nishimura
,
J. Vac. Sci. Technol. B
18
,
1586
(
2000
).
17.
S.
Iyer
,
S.
Hegde
,
A.
Abul-Fadl
,
K. K.
Bajaj
, and
W.
Mitchel
,
Phys. Rev. B
47
,
1329
(
1993
).
18.
S.
Adachi
,
J. Appl. Phys.
61
,
4869
(
1987
).
19.
M.
Astles
,
H.
Hill
,
A. J.
Williams
,
P. J.
Wright
, and
M. L.
Young
,
J. Electron. Mater.
15
,
41
(
1986
).
20.
Heterojunction Band Discontinuities: Physics and Applications, edited by F. Capasso and G. Margaritondo (North-Holland, New York, 1987).
21.
N.
Georgiev
and
T.
Mozume
,
Appl. Surf. Sci.
159,160
,
570
(
2000
).
22.
L.
Hrivnák
,
J. Appl. Phys.
72
,
3218
(
1992
).
23.
T. Mozume and N. Georgiev (to be published).
24.
V.
Duez
,
O.
Vanbésien
,
D.
Lippens
,
D.
Vignaud
,
X.
Wallart
, and
F.
Mollot
,
J. Appl. Phys.
85
,
2202
(
1999
).
25.
T.
Mozume
,
H.
Yoshida
,
A.
Neogi
, and
M.
Kudo
,
Jpn. J. Appl. Phys., Part 1
38
,
1286
(
1999
).
26.
J. R.
Jensen
,
J. M.
Hvam
, and
W.
Langbein
,
J. Appl. Phys.
86
,
2584
(
1999
).
27.
A.
Dimoulas
,
A.
Derekis
,
G.
Kyriakidis
, and
A.
Christou
,
Appl. Surf. Sci.
50
,
353
(
1991
).
28.
S. F.
Yoon
,
P. H.
Zhang
,
H. Q.
Zheng
, and
K.
Radhakrishnan
,
J. Cryst. Growth
191
,
24
(
1998
).
29.
N.
Bouarissa
,
Superlattices Microstruct.
26
,
279
(
1999
).
30.
G.
Tuttle
,
H.
Kroemer
, and
J. H.
English
,
J. Appl. Phys.
67
,
3032
(
1990
).
31.
M. J.
Yang
,
M. J.
Moore
,
B. R.
Bennett
,
B. V.
Shanabrook
,
J. O.
Cross
,
W. W.
Bewley
,
C. L.
Felix
,
I.
Vurgaftman
, and
J. R.
Meyer
,
J. Appl. Phys.
86
,
1796
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.