Si nanowires grow rapidly by chemical vapor deposition on Ti-containing islands on Si surfaces when an abundant supply of Si-containing gaseous precursor is available. The density of wires is approximately the same as the density of the nucleating islands on the Si surface, although at least two different types of islands appear to correlate with very different wire growth rates. For the deposition conditions used, a minority of long, defect-free wires form, along with more numerous wires containing defects. Energy-dispersive x-ray spectroscopy shows that the Ti-containing nanoparticles remain at the tip of the growing wires. The estimated diffusion coefficient of Si in TiSi2 is consistent with the catalyzing nanoparticle remaining in the solid phase during nanowire growth.

1.
C. P.
Collier
,
E. W.
Wong
,
M.
Belohradsky
,
F. M.
Raymo
,
J. F.
Stoddart
,
P. J.
Kuekes
,
R. S.
Williams
, and
J. R.
Heath
,
Science
285
,
391
(
1999
).
2.
J.
Westwater
,
D. P.
Gosain
,
S.
Tomiya
,
S.
Usui
, and
H.
Ruda
,
J. Vac. Sci. Technol. B
15
,
554
(
1997
).
3.
A. M.
Morales
and
C. M.
Lieber
,
Science
279
,
208
(
1998
).
4.
T. I.
Kamins
,
R.
Stanley Williams
,
Y.
Chen
,
Y.-L.
Chang
, and
Y. A.
Chang
,
Appl. Phys. Lett.
76
,
562
(
2000
).
5.
R. S.
Wagner
and
W. C.
Ellis
,
Appl. Phys. Lett.
4
,
89
(
1964
).
6.
R. S.
Wagner
,
W. C.
Ellis
,
K. A.
Jackson
, and
S. M.
Arnold
,
J. Appl. Phys.
35
,
2993
(
1964
).
7.
Binary Alloy Phase Diagrams, 2nd ed., edited by T. B. Massalski (ASM International, Metals Park, OH, 1990), p. 3370.
8.
T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams (unpublished).
9.
R. P.
Southwell
and
E. G.
Seebauer
,
J. Electrochem. Soc.
143
,
1726
(
1996
).
10.
S. P. Murarka, Silicides for VLSI Applications (Academic, Orlando, FL, 1983), pp. 100–101.
11.
J. P.
McCaffrey
,
Microsc. Res. Tech.
24
,
180
(
1993
).
12.
G. A. D.
Briggs
,
D. P.
Basile
,
G.
Medeiros-Ribeiro
,
T. I.
Kamins
,
D. A. A.
Ohlberg
, and
R.
Stanley Williams
,
Surf. Sci.
457
,
147
(
2000
).
13.
A.
Ishitani
,
H.
Kitajima
,
N.
Endo
, and
N.
Kasai
,
Jpn. J. Appl. Phys., Part 1
24
,
1267
(
1985
).
14.
Handbook of Chemistry and Physics, 79th ed., edited by D. R. Lide (Chemical Rubber Corp., New York, 1998), pp. 9–51.
15.
S.
Hocine
and
D.
Mathiot
,
Mater. Sci. Forum
38–41
,
725
(
1989
).
16.
M.
Wautelet
,
J. P.
Dauchot
, and
M.
Herq
,
Nanotechnology
11
,
6
(
2000
).
17.
N.
de Lanerolle
,
B.
Kim
,
L.
Moser
,
Y.
Zheng
,
D.
Sterner
, and
J.
Berg
,
J. Electron. Mater.
19
,
1185
(
1990
).
18.
L. S.
Hung
,
J.
Gyulai
,
J. W.
Mayer
,
S. S.
Lau
, and
M.-A.
Nicolet
,
J. Appl. Phys.
54
,
5076
(
1983
).
19.
R. P.
Southwell
and
E. G.
Seebauer
,
J. Electrochem. Soc.
144
,
2122
(
1997
).
20.
T.
Sandwick
and
K.
Rajan
,
J. Electron. Mater.
19
,
1193
(
1990
).
21.
M.
Tanielian
,
D.
Ramanik
, and
S.
Blackstone
,
IEEE Electron Device Lett.
EDL-6
,
221
(
1985
).
22.
L.
Csepregi
,
J. W.
Mayer
, and
T. W.
Sigmon
,
Appl. Phys. Lett.
29
,
92
(
1976
).
23.
W. W.
Park
,
M. F.
Becker
, and
R. M.
Walser
,
J. Mater. Res.
3
,
298
(
1988
);
G. L. Olson, J. A. Roth, L. D. Hess, and J. Narayan, in Layered Structures and Interface Kinetics, edited by S. Furukawa (KTK Scientific, Tokyo, 1985), p. 73.
24.
C.-S.
Yoo
,
Y.-H.
Tsai
, and
Y.-C.
Chao
,
J. Electrochem. Soc.
138
,
321
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.