Silk fibroin is a simple protein expected to have functional applications in medicine and bioelectronics. The primary structure of this protein is quite simple, and the main secondary structures are β-sheet crystals and amorphous random coils. In the present study, we investigated pulsed laser deposition (PLD) of fibroin with the β-sheet structures as targets. The primary and secondary structures in films deposited were analyzed using infrared spectroscopy. Normal laser deposition at 351 nm using neat fibroin targets produced thin films of fibroin with a random coiled structure. Ablation was triggered by two-photonic excitation of the peptide chains, which resulted in the destruction of β-sheet structure in PLD. In order to avoid the two-photonic excitation, we adopted a PLD method utilizing anthracene (5–0.1 wt %) in a photosensitized reaction involving doped fibroin targets. Laser light (351 or 355 nm) was absorbed only by anthracene, which plays an important role converting photon energy to thermal energy with great ablation efficiency. Thin fibroin films deposited by this method had both random coil and β-sheet structures. As the dopant concentration and laser fluence decreased, the ratio of β-sheet domain to random coil increased in thin deposited films.

1.
I.
Lee
,
J. W.
Lee
, and
E.
Greenbaum
,
Phys. Rev. Lett.
79
,
3294
(
1997
).
2.
R. R.
Birge
,
N. B.
Gillespie
,
E. W.
Izaguirre
,
A.
Kusnetzow
,
A. F.
Lawrence
,
D.
Singh
,
Q. W.
Song
,
E.
Schmidt
,
J. A.
Stuart
,
S.
Seetharaman
, and
K. J.
Wise
,
J. Phys. Chem. B
103
,
10746
(
1999
).
3.
I.
Yamazaki
,
A.
Osuka
, and
N.
Ohta
,
Mol. Cryst. Liq. Cryst.
315
,
235
(
1998
).
4.
Laser Ablation—Proceedings of the Fifth International Conference, edited by J. S. Horwitz, H. U. Krebs, K. Murakami, and M. Stuke (Springer, Berlin, 1999).
5.
J. W.
Elam
and
D. H.
Levy
,
J. Phys. Chem. B
102
,
8113
(
1998
).
6.
M. R.
Emmert-Buck
,
R. F.
Bonner
,
P. D.
Smith
,
R. F.
Chuaqui
,
Z.
Zhuang
,
S. R.
Goldstein
,
R. A.
Weiss
, and
L. A.
Liotta
,
Science
274
,
998
(
1996
).
7.
G.
Fuhr
,
B.
Ronacher
,
R.
Krahe
,
S.
Fest
,
S. G.
Shirley
, and
S.
Rogaschewski
,
Appl. Phys. A: Mater. Sci. Process.
68
,
379
(
1999
).
8.
Y.
Tsuboi
and
A.
Itaya
,
Chem. Lett.
521
(
1998
).
9.
G. B.
Blanchet
,
C. R.
Fincher
, Jr.
,
C. L.
Jackson
,
S. I.
Shar
, and
K. H.
Gardner
,
Science
262
,
719
(
1993
).
10.
Y.
Ueno
,
T.
Fujii
, and
F.
Kannari
,
Appl. Phys. Lett.
65
,
1370
(
1994
).
11.
S.
Nishio
,
T.
Chiba
,
A.
Matsuzaki
, and
H.
Sato
,
J. Appl. Phys.
79
,
7198
(
1996
).
12.
J.
Heitz
and
J. J.
Dickinson
,
Appl. Phys. A: Mater. Sci. Process.
68
,
515
(
1999
).
13.
Y.
Tsuboi
,
M.
Goto
, and
A.
Itaya
,
J. Appl. Phys.
85
,
4189
(
1999
).
14.
D. A.
Allwood
,
P. E.
Dyer
,
J.
Gonzalo
,
H. V.
Snelling
, and
M.
Hird
,
Chem. Phys. Lett.
301
,
91
(
1999
).
15.
R.
Schwodiauer
,
J.
Heitz
,
E.
Arenholz
,
S.
Bauer-Gogonea
,
S.
Bauer
, and
W.
Wirges
,
J. Polym. Sci., Polym. Phys. Ed.
37
,
2115
(
1999
).
16.
T. Asakura and D. Kaplan, in Encyclopedia of Agricultural Science, edited by C. J. Arutzen (Academic, New York, 1994), Vol. 4.
17.
T.
Asakura
,
Sanshikagaku to Gijutsu
28
,
10
(
1989
) (in Japanese).
18.
T.
Asakura
and
M.
Demura
,
Sen'i Gakkaishi
45
,
252
(
1989
) (in Japanese).
19.
Strictly speaking, it is impossible to prepare solid fibroin consisting completely of β-sheet crystal due to the presence of aromatic aminoacids (tyrosine, triptophan, and phenylalanine) in the polypeptide chains. It has been accepted that the degree of β-sheet type crystallization in solid fibroin (Bombyx Mori) is about 30%–50%. The degree of the β-sheet type crystallization of the present fibroin target is deduced to be ∼40% on the basis of the literature [
J.
Magoshi
,
Kobunshi Kagaku
30
,
653
(
1973
) (in Japanese)].
Following the custom seen in the literature (Refs. 35,36 37), here we call this type of solid fibroin “β-sheet type fibroin.”
20.
R. E.
Marsh
,
R. B.
Corey
, and
L.
Pauling
,
Biochim. Biophys. Acta
16
,
1
(
1955
).
21.
Y.
Takahashi
,
M.
Gehoh
, and
K.
Yuzuriha
,
J. Polym. Sci., Polym. Phys. Ed.
29
,
889
(
1991
).
22.
H.
Hiraoka
,
T. J.
Chuang
, and
H.
Masuhara
,
J. Vac. Sci. Technol. B
6
,
463
(
1988
).
23.
R.
Srinivasan
and
B.
Braren
,
Appl. Phys. A: Mater. Sci. Process.
45
,
289
(
1988
).
24.
H.
Fujiwara
,
H.
Fukumura
, and
H.
Masuhara
,
J. Phys. Chem.
99
,
11844
(
1995
).
25.
Y.
Tsuboi
,
H.
Fukumura
, and
H.
Masuhara
,
J. Phys. Chem.
99
,
10305
(
1995
).
26.
T.
Lippert
,
R. L.
Webb
,
S. C.
Langford
, and
J. T.
Dickinson
,
J. Appl. Phys.
85
,
1838
(
1999
).
27.
Y.
Tsuboi
and
A.
Itaya
,
Appl. Phys. Lett.
74
,
3896
(
1999
).
28.
T.
Miyazawa
and
E. R.
Blout
,
J. Am. Chem. Soc.
83
,
712
(
1961
).
29.
In our previous paper (Ref. 8), we suggested that laser ablation of neat fibroin films at 351 nm was triggered by excitation of the aromatic aminoacids or impurity contained in the films. This suggestion, however, is denied since the neat film is transparent to the 351 nm laser light (Fig. 3).
30.
H.
Fukumura
,
N.
Mibuka
,
S.
Eura
,
H.
Masuhara
, and
N.
Nishi
,
J. Phys. Chem.
97
,
13761
(
1993
).
31.
H.
Fukumura
,
N.
Mibuka
,
S.
Eura
, and
H.
Masuhara
,
Appl. Phys. A: Mater. Sci. Process.
53
,
255
(
1991
).
32.
I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).
33.
Unpublished (measured in Kyoto Institute of Technology for the present study).
34.
J.
Magoshi
,
Kobunshi Ronbunshu
31
,
648
(
1974
) (in Japanese).
35.
H.
Fukumura
and
H.
Masuhara
,
Chem. Phys. Lett.
221
,
373
(
1994
).
36.
J.
Magoshi
,
Kobunshi Ronbunshu
31
,
463
(
1974
) (in Japanese).
37.
J.
Magoshi
,
Kobunshi Ronbunshu
31
,
765
(
1974
) (in Japanese).
This content is only available via PDF.
You do not currently have access to this content.