A molecular physics-based complementary model, which includes both field and current, is introduced to help resolve the E versus 1/E-model controversy that has existed for many years as to the true physics behind time-dependent dielectric breakdown (TDDB). It is shown here that either TDDB model can be valid for certain specified field, temperature, and molecular bonding-energy ranges. For bond strengths <3 eV, the bond breakage rate is generally dominated by field-enhanced thermal processes and the E model is valid. For bond strengths >3 eV, the bond breakage must be hole catalyzed by current-induced hole injection and capture. Under these conditions, the TDDB physics is described well by the 1/E model.

1.
E.
Snow
,
A.
Grove
,
B.
Deal
, and
C.
Sah
,
J. Appl. Phys.
36
,
1664
(
1965
).
2.
C.
Osburn
and
D.
Ormond
,
J. Electrochem. Soc.
121
,
1195
(
1974
).
3.
E. Anolick and G. Nelson, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1979), p. 8.
4.
D. Crook, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1979), p. 1.
5.
A. Berman, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1981), p. 204.
6.
J. W. McPherson and D. A. Baglee, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1985), p. 1.
7.
I. C. Chen, S. Holland, and C. Hu, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1985), p. 24.
8.
I. Chen, J. Choi, T. Chan, T. Ong, and C. Hu, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1988), p. 1.
9.
J. Lee, I. C. Chen, and C. Hu, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1988), p. 131.
10.
K. F. Schuegraph and C. Hu, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1993), p. 7.
11.
M.
Rasras
,
I.
DeWolf
,
G.
Groeseneken
,
B.
Kaczer
,
R.
Degraeve
, and
H.
Maes
,
Tech. Dig. Int. Electron Devices Meet.
,
465
(
1990
).
12.
X.
Gao
and
S.
Yee
,
IEEE Trans. Electron Devices
ED-41
,
1819
(
1994
).
13.
M. Alam, J. Bude, and A. Ghetti, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 2000), p. 21.
14.
C. Hu and Q. Lu, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1999), p. 47.
15.
K.
Cheung
,
Tech. Dig. Int. Electron Devices Meet.
,
719
(
1999
).
16.
Note: In Ref. 15, several equations have terms like “k” and “kJ” that are added, where k is in reciprocal seconds and J is the current density (A/cm2). Obviously, from a simple dimensional analysis, these terms cannot be added which leads to apparent theoretical issues with the equations as presented.
17.
J.
Sune
,
E.
Miranda
,
M.
Nafria
, and
X.
Aymerich
,
Tech. Dig. Int. Electron Devices Meet.
,
191
(
1998
).
18.
R.
Degraeve
,
G.
Groeseneken
,
R.
Bellens
,
M.
Depas
, and
H. E.
Maes
,
Tech. Dig. Int. Electron Devices Meet.
,
863
(
1995
).
19.
R.
Scott
,
N.
Dumin
,
T.
Hughes
,
D.
Dumin
, and
B.
Moore
,
IEEE Trans. Electron Devices
43
,
1133
(
1996
).
20.
K. Okada, S. Kawasaki, and Y. Hirofuji, Extended Abstracts 1994 International Conference on Solid State Devs. and Mats., p. 565.
21.
K.
Okada
,
Jpn. J. Appl. Phys., Part 1
36
,
1443
(
1996
).
22.
J.
Jackson
,
T.
Robinson
,
O.
Oralkan
,
D.
Dumin
, and
G.
Brown
,
Appl. Phys. Lett.
71
,
3682
(
1997
).
23.
J.
Sune
,
G.
Mura
, and
E.
Miranda
,
IEEE Electron Device Lett.
21
,
167
(
2000
).
24.
J. McPherson, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1986), p. 12.
25.
J.
Suehle
and
P.
Chaparala
,
IEEE Trans. Electron Devices
44
,
801
(
1997
).
26.
J.
McPherson
and
H.
Mogul
,
J. Appl. Phys.
84
,
1513
(
1998
).
27.
R.
Moazzami
,
J.
Lee
, and
C.
Hu
,
IEEE Trans. Electron Devices
36
,
2462
(
1989
).
28.
G.
Swartz
,
IEEE Trans. Electron Devices
ED-33
,
1826
(
1986
).
29.
K. C. Boyko and D. L. Gerlach, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1989), p. 1.
30.
J. Suehle, P. Chaparala, C. Messick, W. Miller, and K. Boyko, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1994), p. 120.
31.
P. Charparala, J. Suehle, C. Messick, and M. Roush, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1996), p. 61.
32.
M. Kimura, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1997), p. 190.
33.
J.
McPherson
and
V.
Reddy
,
Tech. Dig. Int. Electron Devices Meet.
,
171
(
1998
).
34.
A.
Yassine
,
H.
Nariman
, and
K.
Olasupo
,
IEEE Electron Device Lett.
20
,
390
(
1999
).
35.
B. Schlund, J. Suehle, C. Messick, and P. Chaparala, International Reliability Physics Proceedings (IEEE, Piscataway, NJ, 1996), p. 84.
36.
C. Kittel, Introduction to Solid State Physics, Fourth Edition (Wiley, New York, 1971), pp. 457–459.
37.
J. R.
Tessman
,
A. H.
Kahn
, and
William
Shockley
,
Phys. Rev.
92
,
890
(
1953
).
38.
Hans
Mueller
,
Phys. Rev.
50
,
547
(
1936
).
39.
Note: Normally there are two electrons in a single Si–O valence bond with each atom donating an electron to the bond. However, about 60%–70% of the Si-donated electron is shifted from the silicon to the oxygen atom. This creates a strong ionic component to the bond energy which is ∼50% of the total bond energy (see Ref. 26). This ionic component is lost when a hole is captured as well as a reduction in the covalent component due to the loss of one of the two electrons from the covalent component. This would tend to validate the assumption that hole capture reduces the bond strength by at least 50%.
40.
D. J.
DiMaria
and
J. W.
Stasiak
,
J. Appl. Phys.
65
,
2342
(
1989
).
41.
K.
Eriguchi
,
Y.
Harada
, and
M.
Niwa
,
J. Appl. Phys.
87
,
1990
(
2000
).
42.
J.
McPherson
and
R.
Khamankar
,
J. Semiconductor Sci. Technol.
15
,
462
(
2000
).
43.
P. Atkins, Physical Chemistry, Fifth Edition (Freeman, San Francisco, CA, 1996), p. 884.
This content is only available via PDF.
You do not currently have access to this content.