The charge transport properties of tri-p-tolylamine (TTA) doped trinaphthalylbenzene have been measured as a function of electric field and temperature. The charge mobilities of the composite are comparable to but somewhat lower than that of TTA doped polystyrene, a nonpolar polymeric host, at similar weight fractions. We suggest that the difference is due to inhomogeneity between the host and the dopant. The results suggest that, similar to polymer hosts in molecularly doped polymers, the molecular host only functions as an inert diluter and does not directly participate in the charge transport manifold. The results also substantiate the importance of molecular packing to charge hopping in disordered organic materials. The charge mobility data are analyzed with a disorder model due to Bässler and coworkers and a recently modified expression due to Novikov and coworkers [Phys. Rev. Lett. 81, 4472 (1998)]. Both models provide adequate descriptions of charge transport in organic amorphous materials.

1.
P. M. Borsenberger and D. S. Weiss, Photoreceptors in Xerography (Marcel Dekker, New York, 1998).
2.
D. M.
Pai
and
B. E.
Springett
,
Rev. Mod. Phys.
65
,
163
(
1993
).
3.
L. B. Schein, Electrophotography and Development Physics (Springer, New York, 1992).
4.
R. H.
Young
and
J. J.
Fitzgerald
,
J. Chem. Phys.
102
,
2209
(
1995
).
5.
R. H.
Young
and
J. J.
Fitzgerald
,
J. Chem. Phys.
102
,
6290
(
1995
).
6.
R. H.
Young
and
J. J.
Fitzgerald
,
J. Chem. Phys.
102
,
9380
(
1995
).
7.
R. H.
Young
and
J. J.
Fitzgerald
,
J. Phys. Chem.
99
,
4230
(
1995
).
8.
R. H.
Young
,
J. Chem. Phys.
103
,
6749
(
1995
).
9.
R. H.
Young
,
J. A.
Sinicropi
, and
J. J.
Fitzgerald
,
J. Phys. Chem.
99
,
9497
(
1995
).
10.
R. H.
Young
,
T.-M.
Kung
,
J. A.
Sinicropi
,
N. G.
Rule
,
J. J.
Fitzgerald
,
J. E.
Eilers
,
C. H.
Chen
, and
N. W.
Boaz
,
J. Phys. Chem.
100
,
17923
(
1996
).
11.
L.-B.
Lin
,
S. A.
Jenekhe
, and
P. M.
Borsenberger
,
J. Chem. Phys.
105
,
8490
(
1996
).
12.
L.-B.
Lin
,
S. A.
Jenekhe
, and
P. M.
Borsenberger
,
Appl. Phys. Lett.
69
,
3495
(
1996
).
13.
L.-B.
Lin
,
S. A.
Jenekhe
,
R. H.
Young
, and
P. M.
Borsenberger
,
Appl. Phys. Lett.
70
,
2052
(
1997
).
14.
L.-B.
Lin
,
R. H.
Young
,
S. A.
Jenekhe
, and
P. M.
Borsenberger
,
Appl. Phys. Lett.
72
,
864
(
1998
).
15.
The definition of charge transport active requires clarification. The criteria refer to materials capable of transporting charges under ambient conditions. In ideal conditions, such as under vacuum or a well controlled environment and if charges could be generated, most materials should be able to transport charges to some extent.
16.
Studies done by L. -B. Lin have shown that unless crystallization of small molecules yields well ordered films, the charge transport is impeded in most partially crystallized polycrystalline materials. An article on this issue is under preparation.
17.
W. G.
Gill
,
J. Appl. Phys.
43
,
5033
(
1972
).
18.
D. M.
Pai
,
J. F.
Yanus
,
M.
Stolka
,
D.
Renfer
, and
W. W.
Limburg
,
Philos. Mag. B
48
,
505
(
1983
).
19.
H.
Bässler
,
Philos. Mag. B
50
,
347
(
1984
).
20.
H.-J.
Yuh
and
D. M.
Pai
,
Philos. Mag. Lett.
62
,
61
(
1990
).
21.
P. M.
Borsenberger
and
H.
Bässler
,
J. Chem. Phys.
95
,
5327
(
1991
).
22.
A. V.
Vannikov
,
A. Yu.
Kryukov
,
A. G.
Tyurin
, and
T. S.
Zhuravleva
,
Phys. Status Solidi A
115
,
K47
(
1989
).
23.
H.-J.
Yuh
and
D. M.
Pai
,
J. Imaging Sci. Technol.
36
,
477
(
1992
).
24.
The range of mobilities is from systems without substantial (deep) trapping. Shallow trapping is perhaps unavoidable in most amorphous materials.
25.
H.
Bässler
,
Philos. Mag. B
65
,
795
(
1992
).
26.
D. H.
Dunlap
,
P. E.
Parris
, and
V. M.
Kenkre
,
Phys. Rev. Lett.
77
,
542
(
1996
).
27.
Yu. N.
Gartstein
and
E. M.
Conwell
,
Chem. Phys. Lett.
245
,
351
(
1995
).
28.
S. V.
Novikov
,
D. H.
Dunlap
,
V. M.
Kenkre
,
P. E.
Parris
, and
A. V.
Vannikov
,
Phys. Rev. Lett.
81
,
4472
(
1998
).
29.
T.
Holstein
,
Ann. Phys.
8
,
325
(
1959
).
30.
D.
Emin
,
Phys. Rev. Lett.
32
,
303
(
1973
).
31.
L. B.
Schein
and
J. X.
Mack
,
Chem. Phys. Lett.
149
,
109
(
1988
).
32.
L. B.
Schein
,
Phys. Status Solidi B
175
,
15
(
1993
).
33.
A. V.
Vannikov
,
A. Yu.
Kryukov
,
A. G.
Tyurin
, and
T. S.
Zhuravleva
,
Phys. Status Solidi A
115
,
K47
(
1989
).
34.
V. M.
Kenkre
and
D. H.
Dunlap
,
Philos. Mag.
65
,
831
(
1992
).
35.
D. H.
Dunlap
and
V. M.
Kenkre
,
Chem. Phys.
178
,
67
(
1993
).
36.
Yu. N.
Gartstein
and
E. M.
Conwell
,
Chem. Phys. Lett.
217
,
41
(
1994
).
37.
L. -B. Lin (unpublished).
38.
P. M.
Borsenberger
,
W. T.
Gruenbaum
,
E. H.
Magin
, and
L. J.
Sorriero
,
Chem. Phys.
195
,
435
(
1995
).
39.
The average molecular distance was estimated from the molar ratio of 1:1 and assuming TTA and TNB have the same density of 1.
40.
P. M.
Borsenberger
,
J. Appl. Phys.
68
,
6263
(
1990
).
41.
P. M.
Borsenberger
,
J. Appl. Phys.
68
,
5188
(
1990
).
42.
A.
Dieckmann
,
H.
Bässler
, and
P. M.
Borsenberger
,
J. Chem. Phys.
99
,
8136
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.