The field of viscous liquid and glassy solid dynamics is reviewed by a process of posing the key questions that need to be answered, and then providing the best answers available to the authors and their advisors at this time. The subject is divided into four parts, three of them dealing with behavior in different domains of temperature with respect to the glass transition temperature, Tg, and a fourth dealing with “short time processes.” The first part tackles the high temperature regime T>Tg, in which the system is ergodic and the evolution of the viscous liquid toward the condition at Tg is in focus. The second part deals with the regime T∼Tg, where the system is nonergodic except for very long annealing times, hence has time-dependent properties (aging and annealing). The third part discusses behavior when the system is completely frozen with respect to the primary relaxation process but in which secondary processes, particularly those responsible for “superionic” conductivity, and dopart mobility in amorphous silicon, remain active. In the fourth part we focus on the behavior of the system at the crossover between the low frequency vibrational components of the molecular motion and its high frequency relaxational components, paying particular attention to very recent developments in the short time dielectric response and the high Q mechanical response.

1.
An overview of recent measurements and problem areas was given by
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
,
J. Phys. Chem.
100
,
13200
(
1996
).
Recent examples of transport coefficients covering many orders of magnitude and/or unusual systems are: (a)
R.
Busch
,
S.
Schneider
,
A.
Peker
, and
W. L.
Johnson
,
Appl. Phys. Lett.
68
,
493
(
1996
);
R.
Busch
,
A.
Mauhr
,
E.
Bakke
, and
W. L.
Johnson
,
Mater. Res. Soc. Symp. Proc.
455
,
369
(
1997
);
(b)
F.
Fujara
,
B.
Geil
,
H.
Sillescu
, and
G.
Fleischer
,
Z. Phys. B: Condens. Matter
88
,
195
(
1992
);
(c)
W.
Suchanski
,
J.
Pakula
,
M.
Paulch
, and
J.
Ziolo
,
Mater. Res. Soc. Symp. Proc.
455
,
325
(
1997
);
(d)
M. T.
Cicerone
and
M. D.
Ediger
,
J. Chem. Phys.
100
,
5237
(
1996
).
2.
Some recent examples are: (a)
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
,
J. Chem. Phys.
104
,
2043
(
1996
);
(b)
P. K.
Dixon
,
L.
Wu
,
S. R.
Nagel
,
B. D.
Williams
, and
J. P.
Carini
,
Phys. Rev. Lett.
65
,
1108
(
1990
);
(c)
P.
Lunkenkeimer
,
A.
Pimenov
,
M.
Dressel
,
Y. G.
Goncharov
,
R.
Böhmer
, and
A.
Loidl
,
Phys. Rev. Lett.
77
,
318
(
1996
).
3.
Some recent examples of mechanical relaxation are (i) longitudinal relaxation, from light scattering: (a)
D.
Sidebottom
and
L.
Torell
,
Phys. Rev. Lett.
71
,
2260
(
1993
);
D.
Sidebottom
,
R.
Berman
,
L.
Börjesson
, and
L. M.
Torell
,
Phys. Rev. Lett.
68
,
3587
(
1992
);
(b)
L. M.
Torell
,
L.
Börjesson
, and
M.
Elmroth
,
J. Phys. (Paris), Colloq.
2
,
SA207
(
1990
);
(c)
G.
Li
,
W. M.
Du
,
A.
Sakai
, and
H. Z.
Cummins
,
Phys. Rev. A
46
,
3343
(
1992
);
(d)
H. Z.
Cummins
,
G.
Li
,
W. M.
Du
, and
J.
Hernandez
,
Physica A
204
,
169
(
1994
);
(ii) bulk relaxation through direct observation of density fluctuation decay using neutron spin-echo measurements: (e)
F.
Mezei
,
W.
Knaak
, and
B.
Farrago
,
Phys. Rev. Lett.
58
,
571
(
1987
);
(iii) Bulk relaxation from probe molecule excitation methods:
H.
Wendt
and
R.
Richert
,
J. Phys. Chem. A
102
,
5775
(
1998
);
(iv) shear mechanical, by various methods: (f)
L. M.
Torell
and
R.
Aronsson
,
J. Chem. Phys.
78
,
1121
(
1983
);
(g)
N.
Menon
,
S. R.
Nagel
, and
D. C.
Veneros
,
Phys. Rev. Lett.
73
,
963
(
1994
);
(h)
T.
Christensen
and
N. B.
Olsen
,
Rev. Sci. Instrum.
66
,
5019
(
1995
);
(i)
D. J.
Plazek
,
C. A.
Bero
, and
I. C.
Chay
,
J. Non-Cryst. Solids
172–174
,
181
(
1994
);
(j) D. J. Plazek, and K. L. Ngai, AIP Polymer Property Handbook, edited by J. E. Mark (American Institute of Physics, New York, 1996).
4.
(a)
J. F.
Stebbins
,
I.
Farnan
, and
X.
Xue
,
Chem. Geol.
96
,
371
(
1992
);
J. F.
Stebbins
and
I.
Farnan
,
Science
255
,
586
(
1992
);
I.
Farnan
and
J. F.
Stebbins
,
Science
265
,
1206
(
1994
);
(b)
L.
Andreozzi
,
A.
Di Schino
,
M.
Giordano
, and
D.
Leporini
,
J. Phys.: Condens. Matter
8
,
3795
(
1996
);
(c)
L.
Andreozzi
and
D.
Leporini
,
J. Phys.: Condens. Matter
8
,
9605
(
1996
);
(d)
L.
Andreozzi
,
M.
Giordano
, and
D.
Leporini
,
J. Phys. Chem.
103
,
4097
(
1999
).
5.
(a)
N. O.
Birge
and
S. R.
Nagel
,
Phys. Rev. Lett.
54
,
2674
(
1985
);
(b)
T.
Christensen
,
J. Phys. (Paris), Colloq.
46
,
8
(
1985
);
(c)
C.
Bauer
,
R.
Böhmer
,
S.
Moreno-Flores
,
R.
Richert
, and
H.
Sillescu
,
Phys. Rev. E
61
,
1755
(
1999
);
(d)
M.
Oguni
,
H.
Hikawa
, and
H.
Suga
,
Thermochim. Acta
158
,
143
(
1990
);
(e)
H.
Fujimori
and
M.
Oguni
,
Solid State Commun.
94
,
157
(
1995
);
(f)
H.
Fujimori
and
M.
Oguni
,
J. Chem. Thermodyn.
26
,
367
(
1994
);
(g)
T.
Hikima
,
M.
Hanaya
, and
M.
Oguni
,
Solid State Commun.
93
,
713
(
1995
).
6.
(a)
C. A.
Angell
,
J. Non-Cryst. Solids
131–133
,
13
(
1991
);
C. A. Angell, in Relaxations in Complex Systems, edited by K. Ngai and G. B. Wright (National Technical Information Service, U.S. Department of Commerce, Springfield, VA, 1985), p. 1;
C. A.
Angell
,
J. Phys. Chem. Solids
49
,
863
(
1988
);
(b)
R.
Richert
and
C. A.
Angell
,
J. Chem. Phys.
108
,
9016
(
1998
);
(c)
J. L.
Green
,
K.
Ito
,
K.
Xu
, and
C. A.
Angell
,
J. Phys. Chem.
103
,
3991
(
1999
);
(d) C. A. Angell, in Complex Behavior of Glassy Systems (Proc. 14th Sitges Conference on Theoretical Physics, 1966), edited by M. Rubi (Springer, 1967), p. 1.
7.
A. J.
Batchinski
,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl.
84
,
643
(
1993
).
8.
J. H. Hildebrand, Viscosity and Diffusion (Wiley, New York, 1977).
9.
B. J.
Alder
,
D. M.
Gass
, and
T. E.
Wainwright
,
J. Chem. Phys.
53
,
3813
(
1990
).
10.
R. J.
Speedy
and
C. A.
Angell
,
J. Chem. Phys.
65
,
851
(
1996
).
11.
(a)
U.
Bengtzelius
,
W.
Götze
, and
A.
Sjölander
,
J. Chem. Phys.
17
,
5915
(
1989
);
(b) W. Götze, in Liquids, Freezing, and the Glass Transition, edited by J. P. Hansen and D. Levesque, NATO-ASI Series (Plenum, New York, 1989).
12.
H.
Eyring
,
J. Chem. Phys.
4
,
283
(
1936
).
13.
J. D.
Ferry
,
L. D.
Grandine
, and
E. R.
Fitzgerald
,
J. Appl. Phys.
24
,
911
(
1953
).
14.
(a)
H.
Bässler
,
Phys. Rev. Lett.
58
,
767
(
1987
);
(b)
R.
Richert
and
H.
Bassler
,
J. Phys. B Condensed Matter
2
,
2273
(
1990
).
15.
(a)
T. A.
Litovitz
,
J. Chem. Phys.
20
,
1088
(
1952
); see, also
(b)
L.
Lyon
and
T. A.
Litovitz
,
J. Appl. Phys.
27
,
129
(
1956
);
(c) T. A. Litovitz in Physics of Non-Crystalline Solids, edited by J. A. Prins (North-Holland, Amsterdam, 1965), p. 220;
(d)
T. A.
Litovitz
and
G. E.
McDuffie
,Jr.
,
J. Chem. Phys.
39
,
729
(
1963
);
(e) R. Chamberlin (private communication, 1994).
16.
(a)
H.
Vogel
,
J. Physik. Z.
22
,
645
(
1921
);
(b)
G. S.
Fulcher
,
J. Am. Ceram. Soc.
8
,
339
(
1925
);
(c)
G.
Tamann
and
W. Z.
Hesse
,
Anorg. Allgem. Chem.
156
,
245
(
1926
);
(d)
G. W.
Scherer
,
J. Am. Ceram. Soc.
75
,
1060
(
1992
).
17.
M. L.
Williams
,
R. F.
Landel
, and
J. D.
Ferry
,
J. Am. Chem. Soc.
77
,
3701
(
1955
).
18.
J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
19.
M. H.
Cohen
and
D.
Turnbull
,
J. Chem. Phys.
31
,
1164
(
1959
).
20.
M. F.
Shlesinger
,
Annu. Rev. Phys. Chem.
39
,
269
(
1988
).
21.
J. T.
Bendler
and
M. F.
Schlesinger
,
J. Stat. Phys.
53
,
531
(
1988
).
22.
(a)
R.
Hall
and
P. G.
Wolynes
,
J. Chem. Phys.
86
,
2943
(
1987
);
(b)
P. G.
Wolynes
,
Phys. Rev. A
40
,
1045
(
1989
).
23.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
24.
P. G.
Wolynes
,
Phys. Rev. A
40
,
1045
(
1989
).
25.
C. A.
Angell
and
W.
Sichina
,
Ann. (N.Y.) Acad. Sci.
279
,
53
(
1976
).
26.
J. C.
Dyre
,
N. B.
Olsen
, and
T.
Christensen
,
Phys. Rev. B
53
,
2171
(
1996
).
27.
(a)
L.
Wu
,
P. K.
Dixon
,
S. R.
Nagel
,
B. D.
Williams
, and
J. P.
Carini
,
J. Non-Cryst. Solids
131
,
32
(
1991
);
(b)
C. T.
Moynihan
and
H.
Sasabe
,
J. Polym. Sci., Part B: Polym. Phys.
16
,
1447
(
1978
).
28.
(a)
H.
Sillescu
,
J. Non-Cryst. Solids
131–133
,
378
(
1991
);
(b)
M. T.
Cicerone
and
M. D.
Ediger
,
J. Chem. Phys.
102
,
471
(
1995
);
M. T.
Cicerone
and
M. D.
Ediger
,
J. Chem. Phys.
104
,
7210
(
1996
);
(c)
R.
Richert
,
Chem. Phys. Lett.
171
,
222
(
1990
);
R.
Richert
,
J. Phys. Chem.
B101
,
6323
(
1997
);
R.
Richert
and
A.
Wagener
,
J. Phys. Chem.
97
,
3146
(
1993
);
R.
Richert
and
M.
Richert
,
Phys. Rev. E
58
,
779
(
1998
);
(d)
G.
Williams
and
P. J.
Harris
,
Faraday Symp. Chem. Soc.
6
,
14
(
1972
);
M. Davis, P. J. Harris, and G. Williams, J. Chem. Soc., Faraday 2, 1785 (1973);
(e)
A.
Barkatt
and
C. A.
Angell
,
J. Phys. Chem.
79
,
2192
(
1975
);
C. A. Angell, A. Barkatt, C. T. Moynihan, and H. Sasabe, on Molten Salts, edited by J. P. Pemsler (The Electrochemical Soc. Inc., Penington, NJ, 1976), p. 195;
(f)
R.
Böhmer
,
E.
Sanchez
, and
C. A.
Angell
,
J. Phys. Chem.
96
,
9089
(
1992
).
29.
(a)
G. S.
Fulcher
,
J. Am. Ceram. Soc.
8
,
339
(
1925
);
(b) F. Stickel (private communication).
30.
A.
Inoue
et al.,
Mater. Trans., JIM
34
,
351
(
1993
);
A. J.
Fecht
,
Mater. Res. Soc. Symp. Proc.
455
,
307
(
1997
).
31.
(a)
P. B.
Macedo
,
J. Chem. Phys.
49
,
1887
(
1968
);
(b)
R.
Weiler
,
R.
Bose
, and
P. B.
Macedo
,
J. Chem. Phys.
53
,
1258
(
1970
);
(c)
P. B.
Macedo
,
J. H.
Simmons
, and
W.
Haller
,
Phys. Chem. Glasses
9
,
156
(
1968
);
(d)
A.
Napolitano
and
P. B.
Macedo
,
J. Res. Natl. Bur. Stand., Sect. A
72A
,
425
(
1968
);
(e)
H.
Tweer
,
J. H.
Simmons
, and
P. B.
Macedo
,
J. Chem. Phys.
54
,
1952
(
1971
).
32.
(a)
F.
Stickel
,
E. W.
Fischer
, and
A.
Schönhals
,
Phys. Rev. Lett.
73
,
2936
(
1991
);
(b)
F.
Stickel
and
E. W.
Fischer
,
Physica A
201
,
263
(
1993
);
(c)
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
,
J. Chem. Phys.
104
,
2043
(
1996
);
(d)
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
,
J. Chem. Phys.
102
,
6251
(
1995
).
33.
P. K.
Dixon
,
Phys. Rev. B
42
,
8179
(
1990
).
34.
A.
Lee
and
G. B.
McKenna
,
Polymer
29
,
1812
(
1988
).
35.
C. A.
Angell
,
J. Res. Natl. Inst. Stand. Technol.
102
,
171
(
1997
).
36.
C.
Alba-Simionesco
,
J.
Fan
, and
C. A.
Angell
,
J. Chem. Phys.
110
,
5262
(
1999
);
C. A.
Angell
,
C.
Alba-Simionesco
,
J.
Fan
, and
J. L.
Green
,
NATO ASI Ser., Ser. C
435
(
1993
).
37.
W.
Kauzmann
,
Chem. Rev.
43
,
219
(
1948
).
38.
Y.
Bottinga
,
P.
Richet
, and
A.
Sipp
,
Am. Mineral.
80
,
305
(
1995
).
39.
B.
Derrida
,
Phys. Rev. Lett.
45
,
79
(
1987
);
B.
Derrida
,
Phys. Rev. Lett.
24
,
2613
(
1987
);
B.
Derrida
,
Phys. Rev. B
24
,
2613
(
1981
).
40.
(a) S. R. Nagel, in Phase Transitions and Relaxation in Systems with Competing Energy Scales, edited by T. Riste and D. Sherrington (Kluwer Academic, Dordrecht, Netherlands, 1993), p. 259;
(b) S. R. Nagel and M. Grabow, Ann. (N.Y.) Acad. Sci. 484 (1986).
41.
S. N. N.
Murthy
,
J. Phys. Chem.
93
,
3347
(
1989
).
42.
P. W. Anderson, Ann. (N.Y.) Acad. Sci. 484 (1986).
43.
M. H.
Cohen
and
G.
Grest
,
Adv. Chem. Phys.
48
,
370
(
1981
);
M. H.
Cohen
and
G.
Grest
,
Phys. Rev. B
20
,
1077
(
1979
).
44.
W. C.
Hasz
,
J. H.
Whang
, and
C. T.
Moynihan
,
J. Non-Cryst. Solids
161
,
127
(
1993
).
45.
D.
Kivelson
,
S. A.
Kivelson
,
X.
Zhao
,
Z.
Nussinov
, and
G.
Tarjus
,
Physica A
219
,
27
(
1995
).
46.
H. Z.
Cummins
,
Phys. Rev. E
54
,
5870
(
1996
).
47.
P.
Richet
,
Geochim. Cosmochim. Acta
48
,
47
(
1984
).
48.
P.
Richet
and
Y.
Bottinga
,
Rev. Geophys.
24
,
1
(
1986
).
49.
It is worth noting also (a) the direct test of the constancy of the ScT product at the glass transition by
S.
Takahara
,
O.
Yamamuro
, and
T.
Matsuo
,
J. Phys. Chem.
99
,
9589
(
1995
),
and (b) how well the Adam–Gibbs equation also accounts for the validity of an Ehrenfest-like thermodynamic relation testable at the glass transition [
C. A.
Angell
and
W.
Sichina
,
Ann. (N.Y.) Acad. Sci.
279
,
53
(
1976
)], and, as we see in Sec. B, permits rather successful accounts of the out-of-equilibrium isothermal relaxation of quenched and vapor-deposited glasses. Finally, in the form of the Scherer–Hodge version of the Tool–Narayanaswamy–Moynihan phenomenological model (discussed in Sec. B), it permits an adequate description of the T-scanning glass transition itself, in region B of Fig. 1, see Sec. B.1.1, Fig. 17.
50.
P. H. Poole, P. F. McMillan, and G. H. Wolf, in Structure, Dynamics and Properties of Silicate Melts, edited by J. F. Stebbins, P. F. McMillan, and D. B. Dingwell (Mineralogical Society of America, Washington, D.C., 1995).
51.
M.
Tatsumisago
,
B. L.
Halfpap
,
J. L.
Green
,
S. M.
Lindsay
, and
C. A.
Angell
,
Phys. Rev. Lett.
64
,
1549
(
1990
).
52.
M. F.
Thorpe
,
J. Non-Cryst. Solids
57
,
355
(
1983
).
53.
M.
Goldstein
,
J. Chem. Phys.
51
,
3728
(
1969
).
54.
(a) M. Hemmati, C. T. Moynihan, and C. A. Angell, J. Chem. Phys. (submitted);
(b)
G.
Parisi
,
J. Phys. Chem.
103
,
4128
(
1999
);
(c)
W.
Kob
,
F.
Sciortino
, and
P.
Tartaglia
,
Europhys. Lett.
49
,
590
(
2000
).
55.
(a)
W.
Oldekop
,
Glastech Berichte
30
,
8
(
1957
);
(b)
W. T.
Laughlin
and
D. R.
Uhlmann
,
J. Phys. Chem.
76
,
2317
(
1972
);
(c) C. A. Angell and J. C. Tucker, in Chemistry of Process Metallurgy, Richardson Conference (Imperial College of Science, Press London, 1973), edited by J. H. E. Jeffes and R. J. Tait, Inst. Mining Metallurgy Publication, 1974, p. 207.
56.
(a)
V. N.
Novikov
,
E.
Rössler
,
V. K.
Malinovsky
, and
N. V.
Surovtsev
,
Europhys. Lett.
35
,
289
(
1996
);
(b)
E.
Rossler
and
A.
Sokolov
,
Chem. Geol.
128
,
143
(
1996
);
(c)
A. P.
Sokolov
,
J. Non-Cryst. Solids
235–237
,
190
(
1998
);
A. P.
Sokolov
,
Endeavour
21
,
109
(
1997
).
57.
H.
Fujimori
and
M.
Oguni
,
Solid State Commun.
94
,
1157
(
1995
) (see also
A.
Kudlik
et al.,
J. Mol. Struct.
479
,
201
(
1999
).
58.
(a)
P.
Harrowell
,
Phys. Rev. E
48
,
4359
(
1993
);
(b)
D.
Perera
and
P.
Harrowell
,
Phys. Rev. E
54
,
1652
(
1996
).
59.
(a)
D.
Kivelson
,
S. A.
Kivelson
,
X. L.
Zhao
,
Z.
Nussinov
, and
G.
Tarjus
,
Physica A
219
,
27
(
1995
);
(b) D. Kivelson, G. Tarjus, and S. A. Kivelson, in Supercooled Liquids: Advances and Novel Applications, edited by J. Fourkas et al. (ACS Books, 1997), p. 67;
(c)
S. A.
Kivelson
,
X.-L.
Zhao
,
D.
Kivelson
,
C. M.
Knobler
, and
T.
Fischer
,
J. Chem. Phys.
102
,
2391
(
1994
).
60.
(a)
F. S.
Stillinger
and
T.
Weber
,
Science
225
,
983
(
1984
);
(b)
F. S.
Stillinger
,
Science
267
,
1935
(
1995
);
(c)
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Nature (London)
393
,
554
(
1998
);
(d)
F.
Sciortino
and
P.
Tartaglia
,
Phys. Rev. Lett.
78
,
2385
(
1997
);
(e)
E.
La Nave
,
A.
Scala
,
F. W.
Starr
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. Lett.
84
,
4605
(
2000
);
(f) C. Donati, F. Sciortino, and P. Tartaglia, Phys. Rev. Lett. (submitted);
(g)
C. A.
Angell
,
B. E.
Richards
, and
V.
Velikov
,
J. Phys. Condensed Matter
11
,
75
(
1999
);
(h) D. J. Wales, J. P. K. Doyle, M. A. Miller, P. N. Mortenson, and T. R. Walsh, Adv. Chem. Phys. 115 (in press, 2000);
(i) D. J. Wales and J. P. K. Doyle (unpublished).
61.
(a)
R. J.
Speedy
and
P. G.
Debenedetti
,
Mol. Phys.
88
,
1293
(
1996
);
(b)
A.
Heuer
,
Phys. Rev. Lett.
78
,
4051
(
1997
);
(c)
R. J.
Speedy
,
J. Phys. Chem.
103
,
4060
(
1999
).
62.
(a)
D.
Ehlich
and
H.
Sillescu
,
Macromolecules
23
,
1600
(
1990
);
(b)
F.
Fujara
,
B.
Geil
,
H.
Sillescu
, and
G. Z.
Fleischer
,
Z. Phys. B: Condens. Matter
88
,
195
(
1992
);
(c)
E.
Rossler
and
P. J.
Eiermann
,
J. Chem. Phys.
100
,
5237
(
1994
);
H.
Sillescu
,
J. Chem. Phys.
104
,
4877
(
1996
);
(d)
G.
Heuberger
and
H.
Sillescu
,
J. Phys. Chem.
100
,
15255
(
1996
);
(e)
I.
Chang
and
H.
Sillescu
,
J. Phys. Chem. B
101
,
8794
(
1997
).
63.
(a)
F. R.
Blackburn
,
C. Y.
Wang
, and
M. D.
Ediger
,
J. Phys. Chem.
100
,
18249
(
1996
);
(b)
M. D.
Ediger
,
J. Non-Cryst. Solids
235–237
,
10
(
1998
);
(c)
M. T.
Cicerone
and
M. D.
Ediger
,
J. Chem. Phys.
104
,
7210
(
1996
).
64.
(a)
H.
Yinnon
and
A. R.
Cooper
,
Phys. Chem. Glasses
21
,
204
(
1980
);
(b)
G.
Brebec
,
R.
Seguin
,
C.
Sella
,
J.
Bevenot
, and
J. C.
Martin
,
Acta Metall.
28
,
327
(
1980
).
65.
(a)
C. T.
Moynihan
,
J. Phys. Chem.
70
,
339
(
1966
);
(b)
J.
Kawamura
and
M.
Shimoji
,
J. Non-Cryst. Solids
88
,
286
(
1986
);
J.
Kawamura
and
M.
Shimoji
,
J. Non-Cryst. Solids
88
,
295
(
1986
);
(c)
H.
Tweer
,
N.
Laberge
, and
P. B.
Macedo
,
J. Am. Ceram. Soc.
54
,
121
(
1971
);
(d)
R.
Bose
,
R.
Weiler
, and
P. B.
Macedo
,
Phys. Chem. Glasses
11
,
117
(
1970
).
66.
B. D.
Freeman
and
A. J.
Hill
,
ACS Symp. Ser.
710
,
306
(
1998
).
67.
(a)
M. C.
Lee
and
N. A.
Peppas
,
Prog. Polym. Sci.
18
,
947
(
1993
);
N. A.
Peppas
and
L.
Brannon-Peppas
,
J. Food. Eng.
22
,
189
(
1994
);
(b)
Y.
Zhang
,
E. M.
Stolper
, and
G.
Wasserburg
,
Geochim. Cosmochim. Acta
55
,
143
(
1991
);
(c) D. B. Dingwell, in Structure, Dynamics, and Properties of Silicate Melts, edited by J. F. Stebbins, P. F. McMillan, and D. B. Dingwell (Mineralogical Society of America, Washington, D. C., 1995), Ch. 2, Fig. 37.
68.
(a)
C. T.
Moynihan
,
N.
Balitactac
,
L.
Boone
, and
T. A.
Litovitz
,
J. Chem. Phys.
55
,
3013
(
1971
);
(b)
C. T.
Moynihan
,
J. Electrochem. Soc.
126
,
2177
(
1979
);
(c)
C. A.
Angell
,
Solid State Ionics
9&10
,
3
(
1983
).
69.
K.
Ngai
,
Solid State Ionics
5
,
27
(
1981
).
70.
(a)
K. S.
Cole
and
R. H.
Cole
,
J. Chem. Phys.
9
,
341
(
1941
);
(b)
R. H.
Cole
and
D. W.
Davidson
,
J. Chem. Phys.
20
,
1389
(
1952
);
(c)
R. V.
Chamberlin
,
Europhys. Lett.
33
,
545
(
1996
);
(d)
C.
Hansen
,
R.
Richert
, and
E. W.
Fischer
,
J. Non-Cryst. Solids
215
,
293
(
1997
);
(e)
S.
Havriliak
, Jr.
and
S. J.
Havriliak
,
J. Non-Cryst. Solids
172–174
,
297
(
1994
).
71.
C. A. Angell and J. Wong, Glass Structure by Spectroscopy (Marcel Dekker, 1976). The “constant loss” feature has a long history. Its origin at high frequencies near the IR and its persistence down to low frequencies, was first outlined, in the absence of much data, in a chapter on Relaxation Spectroscopy in the above book. There it was presented as an absorbance (or conductivity) with first power frequency dependence, but since loss is proportional to (conductivity/frequency), it is the same thing. It will be given some more attention in Sec. C.2.3 and in Sec. D (“short time dynamics”) of this review.
72.
(a)
A.
Zetsche
,
F.
Kremer
,
W.
Jung
, and
H.
Schulze
,
Polymer
31
,
1883
(
1990
);
(b)
C. M.
Roland
and
K.-L.
Ngai
,
Macromolecules
25
,
363
(
1992
);
(c)
A.
Zetsche
and
E. W.
Fischer
,
Acta Polym.
45
,
168
(
1994
).
73.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
51
,
4626
(
1995
).
74.
(a)
W.
Kob
,
C.
Donati
,
P. H.
Poole
,
S. J.
Plimpton
, and
S. C.
Glotzer
,
Phys. Rev. Lett.
79
,
2827
(
1997
);
(b)
C.
Donati
,
J. F.
Douglas
,
W.
Kob
,
P. H.
Poole
,
S. J.
Plimpton
, and
S. C.
Glotzer
,
Phys. Rev. Lett.
80
,
2338
(
1998
);
(c)
C.
Donati
,
P. H.
Poole
, and
S. C.
Glotzer
,
Phys. Rev. Lett.
82
,
6064
(
1999
);
(d) S. C. Glotzer, J. Non-Cryst. Solids (in press).
75.
K. L.
Ngai
,
R. W.
Rendell
,
A. F.
Yee
, and
D. J.
Plazek
,
Macromolecules
24
,
61
(
1991
).
76.
W.
Steffen
,
A.
Patkowski
,
G.
Meier
, and
E. W.
Fischer
,
J. Chem. Phys.
96
,
4171
(
1992
).
77.
(a)
J. R.
Borjesson Stevens
and
L. M.
Torell
,
Polymer
28
,
1803
(
1987
);
(b)
D.
Boese
,
B.
Momper
,
G.
Meier
,
F.
Kremer
,
J.-U.
Hagenah
, and
E. W.
Fischer
,
Macromolecules
22
,
4416
(
1989
).
78.
(a) E. A. Pavlatou, Ph.D. thesis, University of Patras, 1994;
(b)
M. J.
Lebon
,
C.
Dreyfus
,
G.
Li
,
A.
Aouadi
,
H. Z.
Cummins
, and
R. M.
Pick
,
Phys. Rev. E
51
,
4537
(
1995
).
79.
C. P. Smyth, Dielectric Behavior and Structure (McGraw Hill, New York, NY, 1955), p. 431.
80.
(a)
H.
Wendt
and
R.
Richert
,
J. Phys. Chem. A
102
,
5775
(
1998
);
(b) A detailed review of the molecular probe dielectric and mechanical relaxation technique using triplet state probes, is now available [R. Richert, J. Chem. Phys. (in press)].
81.
Kishimoto, Ph.D. thesis, University of Osaka, 1994.
82.
(a)
M. A.
Floriano
and
C. A.
Angell
,
J. Chem. Phys.
91
,
2537
(
1989
);
(b)
W. M.
Du
,
G.
Li
,
H. Z.
Cummins
,
M.
Fuchs
,
J.
Toulouse
, and
L. A.
Knauss
,
Phys. Rev. E
49
,
2192
(
1994
);
(c)
F.
Qi
,
K. U.
Schug
,
A.
Doess
,
R.
Boehmer
,
H.
Sillescu
,
H.
Kolshorn
, and
H.
Zimmerman
,
J. Chem. Phys.
112
,
9455
(
2000
).
83.
(a)
G.
Meier
,
B.
Gerharz
,
D.
Boese
, and
E. W.
Fischer
,
J. Chem. Phys.
94
,
3050
(
1991
);
(b)
G.
Meier
,
B.
Gerharz
, and
D.
Boese
,
J. Non-Cryst. Solids
131–133
,
144
(
1991
).
84.
(a)
N. B.
Ollsen
,
T.
Christensen
, and
J. C.
Dyre
, arXiv: cond-mat/0006165, 9 Jun 2000;
(b)
U.
Schneider
,
R.
Brand
,
P.
Lunkenheimer
, and
A.
Loidl
, cond-mat/0001055, 5 Jan 2000;
(c)
C.
Hansen
and
R.
Richert
,
J. Phys. Condens. Matter
9
,
9661
(
1997
);
(d)
H.
Wagner
and
R.
Richert
,
J. Chem. Phys.
110
,
11660
(
1999
).
85.
P. K.
Dixon
and
S. R.
Nagel
,
Phys. Rev. Lett.
65
,
1108
(
1990
).
86.
S. N. N.
Murthy
,
J. Phys. Chem.
93
,
3347
(
1989
).
87.
T.
Christensen
and
N. B.
Olsen
,
Phys. Rev. B
49
,
15396
(
1994
).
88.
T.
Christensen
and
N. B.
Olsen
,
Prog. Theor. Phys. Suppl.
126
,
273
(
1997
).
89.
S. R.
Elliott
,
J. Non-Cryst. Solids
170
,
97
(
1994
).
One of the objections to modulus spectroscopy raised in this polemic was that the electrical modulus was not directly measurable. This objection was disposed of by the development, by
R.
Richert
and
H.
Wagner
in 1996, of the direct method, which they call “real dielectric relaxation,” since it observes field response at constant displacement [
Solid State Ionics
105
,
167
(
1998
)].
90.
C. A. Angell and M. Oguni, J. Non-Cryst Solids (submitted).
91.
(a)
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Phys. Rev. Lett.
66
,
3020
(
1991
);
(b)
A.
Heuer
,
M.
Wilhelm
,
H.
Zimmermann
, and
H. W.
Spiess
,
Phys. Rev. Lett.
75
,
2851
(
1995
);
(c)
R.
Boehmer
,
G.
Hinze
,
G.
Diezemann
,
B.
Geil
, and
H.
Sillescu
,
Europhys. Lett.
36
,
55
(
1996
);
(d)
U.
Tracht
,
M.
Wilhelm
,
A.
Heuer
,
H.
Feng
,
K.
Schmidt-Rohr
, and
H. W.
Spiess
,
Phys. Rev. Lett.
81
,
2727
(
1998
).
92.
(a)
M. T.
Cicerone
and
M. D.
Ediger
,
J. Chem. Phys.
103
,
5684
(
1995
);
(b) M. D. Ediger, Annu. Rev. Phys. Chem. 51 (in press, 2000).
93.
C. T.
Moynihan
and
J.
Schroeder
,
J. Non-Cryst. Solids
160
,
52
(
1993
).
94.
(a)
B.
Schiener
,
A.
Loidl
,
R.
Böhmer
, and
R. V.
Chamberlin
,
Science
274
,
752
(
1996
);
(b)
R.
Boehmer
,
R. V.
Chamberlin
,
G.
Diezemann
,
B.
Geil
,
A.
Heuer
,
G.
Hinze
,
S. C.
Kuebler
,
R.
Richert
,
B.
Schiener
,
H.
Sillescu
,
H. W.
Spiess
,
U.
Tracht
, and
M.
Wilhelm
,
J. Non-Cryst. Solids
235–237
,
1
(
1998
).
95.
R.
Böhmer
,
Curr. Opin. Solid State Mater. Sci.
3
,
378
(
1998
).
96.
H.
Sillescu
,
J. Non-Cryst. Solids
243
,
81
(
1999
).
97.
E. W.
Fischer
,
G.
Meier
,
T.
Rabenau
,
A.
Patkowski
,
W.
Steffen
, and
W.
Thomas
,
J. Non-Cryst. Solids
131–133
,
134
(
1991
);
see also the Discussion sections from the Heraklion (1991) and Alicante relaxation conferences.
98.
(a)
I.
Cohen
,
A.
Ha
,
X. L.
Zhao
,
M.
Lee
,
T.
Fischer
,
M. J.
Strouse
, and
D. J.
Kivelson
,
Phys. Chem.
100
,
8518
(
1996
);
(b)
J.
Fourkas
,
D.
Kivelson
,
U.
Mohanty
, and
K.
Nelson
,
ACS Symp. Ser.
676
, (
1997
);
(c) E. Rossler et al., J. Non-Cryst. Solids (in press);
(d) R. Richert (private communication).
99.
(a)
T.
Kanaya
,
A.
Patkowski
,
E. W.
Fischer
,
J.
Seils
,
H.
Gläser
, and
K.
Kaji
,
Acta Polym.
45
,
137
(
1994
);
(b)
T.
Kanaya
,
A.
Patkowski
,
E. W.
Fischer
,
J.
Seils
,
H.
Gläser
, and
K.
Kaji
,
Macromolecules
28
,
7831
(
1995
).
100.
R.
Böhmer
,
G.
Hinze
,
G.
Diezemann
,
B.
Geil
, and
H.
Sillescu
,
Europhys. Lett.
36
,
55
(
1996
).
101.
K. L.
Ngai
,
R. W.
Rendell
, and
D. J.
Plazek
,
J. Chem. Phys.
94
,
3048
(
1991
).
102.
(a)
J. H.
Wendorf
and
E. W.
Fischer
,
Kolloid Z. Z. Polym.
251
,
876
(
1973
);
J. H.
Wendorf
and
E. W.
Fischer
,
Kolloid Z. Z. Polym.
251
,
884
(
1973
);
(b)
G. S.
Meiling
and
D. R.
Uhlmann
,
Phys. Chem. Glasses
8
,
62
(
1967
);
(c)
A. L.
Renniger
and
D. R.
Uhlmann
,
J. Non-Cryst. Solids
16
,
325
(
1974
).
103.
(a)
R. J.
Roe
and
J. J.
Curro
,
Macromolecules
16
,
425
(
1983
);
(b)
J. G.
Victor
and
J. M.
Torkelson
,
Macromolecules
20
,
2241
(
1987
).
104.
(a)
J.
Schroeder
,
C. J.
Montrose
, and
P. B.
Macedo
,
J. Chem. Phys.
63
,
2907
(
1995
);
(b)
N. L.
Laberge
,
V. V.
Vasilescu
,
C. J.
Montrose
, and
P. B.
Macedo
,
J. Am. Ceram. Soc.
56
,
506
(
1973
);
(c)
J. H.
Simmons
and
P. B.
Macedo
,
J. Chem. Phys.
53
,
2914
(
1970
).
105.
H. B.
Callen
and
T. A.
Welton
,
Phys. Rev.
83
,
34
(
1951
).
106.
E. W.
Fischer
,
G. P.
Hellman
,
H. W.
Spiess
,
F. J.
Horth
,
U.
Ecarius
, and
M.
Wehrle
,
Macromol. Chem. Suppl.
12
,
189
(
1985
).
107.
(a)
A.
Alegria
,
J.
Colmenero
,
K. L.
Ngai
, and
C. M.
Roland
,
Macromolecules
27
,
4486
(
1994
);
(b)
Y. H.
Chin
,
P. T.
Inglefield
, and
A. A.
Jones
,
Macromolecules
26
,
5372
(
1993
).
108.
R. E.
Welton
,
W. J.
MacKnight
,
J. R.
Fried
, and
F. E.
Karasz
,
Macromolecules
11
,
158
(
1987
).
109.
(a)
M. H.
Cohen
and
D.
Turnbull
,
J. Chem. Phys.
34
,
120
(
1960
);
(b)
M. H.
Cohen
and
G.
Grest
,
Adv. Chem. Phys.
48
,
370
(
1981
);
M. H.
Cohen
and
G.
Grest
,
Phys. Rev. B
20
,
1077
(
1979
).
110.
P.
Santangelo
et al.,
J. Non-Cryst. Solids
172–174
,
1084
(
1994
).
111.
P.
Santangelo
,
C. M.
Roland
,
K. L.
Ngai
, and
G.
Meier
,
Macromolecules
26
,
6164
(
1994
).
112.
(a)
V. V.
Brazhkin
,
R. N.
Voloshin
, and
S. V.
Popova
,
Pis'ma Zh. Eksp. Teor. Fiz.
50
,
392
(
1989
);
(b)
V. V.
Brazhkin
,
S. V.
Popova
,
R. N.
Voloshin
, and
A. G.
Umnov
,
High Press. Res.
6
,
363
(
1991
);
(c)
V. V.
Brazhkin
,
R. N.
Voloshin
,
S. V.
Popova
, and
A. G.
Umnov
,
Phys. Lett. A
154
,
413
(
1991
).
113.
(a)
A.
Ferraz
and
N. H.
March
,
Phys. Chem. Liq.
8
,
289
(
1979
);
(b)
M.
van Thiel
and
F. H.
Rees
,
Phys. Rev. B
48
,
3591
(
1993
).
114.
H.
Endo
,
K.
Tamura
, and
M.
Yao
,
Can. J. Phys.
65
,
266
(
1987
).
115.
E. G.
Ponyatovsky
and
O. I.
Barkalov
,
Mater. Sci. Rep.
8
,
147
(
1992
).
116.
E. J.
Rapoport
,
J. Chem. Phys.
46
,
2891
(
1976
);
E. J.
Rapoport
,
J. Chem. Phys.
48
,
1433
(
1968
).
117.
(a)
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature (London)
360
,
324
(
1992
);
(b)
P. H.
Poole
,
U.
Essmann
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. E
48
,
4605
(
1993
);
(c)
P. H.
Poole
,
F.
Sciortino
,
T.
Grande
,
H. E.
Stanley
, and
C. A.
Angell
,
Phys. Rev. Lett.
73
,
1632
(
1994
);
(d) P. G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1996), Chap. 2.
118.
(a)
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature (London)
314
,
76
(
1985
);
(b)
O.
Mishima
,
J. Chem. Phys.
100
,
5910
(
1994
).
119.
(a)
M.
Grimsditch
,
Phys. Rev. Lett.
52
,
2379
(
1984
);
(b)
R. J.
Hemley
,
H. K.
Mao
,
P. M.
Bell
, and
B. O.
Mysen
,
Phys. Rev. Lett.
57
,
747
(
1986
);
(c)
Q.
Williams
and
R.
Jeanloz
,
Science
239
,
902
(
1988
);
(d) G. H. Wolf, S. Wang, C. A. Herbst, D. J. Durben, W. F. Oliver, Z. C. Kang, and K. Halvorson, in High-Pressure Research: Application to Earth and Planetary Sciences, edited by Y. Syono and M. H. Manghnani (Terra Scientific/Am. Geophysical Union, Tokyo/Washington, D.C., 1992), p. 503.
120.
(a)
S.
Aasland
and
P. F.
McMillan
,
Nature (London)
369
,
633
(
1994
);
(b)
P. F.
McMillan
,
C.
Ho
,
S.
Aasland
,
A.
Yeganeh-Haeri
, and
R.
Weber
,
Mater. Res. Soc. Symp. Proc.
455
,
377
(
1997
);
(c) P. F. McMillan and M. Wilding (unpublished).
121.
(a)
W. D.
Lüdke
and
U.
Landman
,
Phys. Rev. B
37
,
4656
(
1988
);
(b)
C. A.
Angell
,
S.
Borick
, and
M.
Grabow
,
J. Non-Cryst. Solids
205
,
463
(
1996
);
(c)
C. A.
Angell
,
J. Phys. Chem.
97
,
6339
(
1993
);
C. A.
Angell
,
Science
267
,
1924
(
1995
);
(d)
C. A.
Angell
,
P. H.
Poole
, and
J.
Shao
,
Nuovo Cimento D
16D
,
993
(
1994
).
122.
(a)
M. O.
Thompson
,
G. J.
Galvin
,
J. W.
Mayer
,
P. S.
Peercy
,
J. M.
Poate
,
D. C.
Jacobson
,
A. G.
Cullis
, and
N. G.
Chew
,
Phys. Rev. Lett.
52
,
2360
(
1984
);
(b)
A.
Filiponi
and
A.
Dicicco
,
Phys. Rev. B
51
,
12322
(
1995
);
(c)
S.
Ansell
,
S.
Krishnan
,
J. F.
Felten
, and
D. L.
Price
,
J. Phys.: Condens. Matter
10
,
L73
(
1998
);
(d)
C. A.
Angell
and
S.
Borick
,
J. Phys.: Condens. Matter
11
,
8163
(
1999
).
123.
(a)
A. Q.
Tool
,
J. Am. Ceram. Soc.
29
,
240
(
1946
);
(b)
A. Q.
Tool
,
J. Res. Natl. Bur. Stand.
37
,
73
(
1946
);
(c)
O. S.
Narayanasway
,
J. Am. Ceram. Soc.
54
,
491
(
1971
);
(d)
C. T.
Moynihan
et al.,
Ann. (N.Y.) Acad. Sci.
279
,
15
(
1976
);
(e)
A.
Kovacs
,
J. J.
Aklonis
,
J. M.
Hutchinson
, and
A. R.
Ramos
,
J. Polym. Sci., Polym. Phys. Ed.
17
,
1097
(
1979
).
124.
G. W.
Scherer
,
J. Am. Ceram. Soc.
67
,
504
(
1984
).
125.
I. M.
Hodge
,
J. Non-Cryst. Solids
169
,
211
(
1994
).
126.
(a) J. D. Ferry, Viscoelastic Properties of Polymers, 3rd. ed. (Wiley, New York, 1980);
(b) W. N. Findley, J. S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, with an Introduction to Linear Viscoelasticity (North-Holland, New York, 1976).
127.
G. W. Scherer, Relaxation in Glass and Composites (Wiley, New York, 1986).
128.
G. B. McKenna, in Comprehensive Polymer Science, Vol. 2 Polymer Properties, edited by C. Booth and C. Price (Pergamon, Oxford, 1989), pp. 311–362.
129.
(a)
I. M.
Hodge
,
J. Non-Cryst. Solids
202
,
164
(
1996
);
I. M.
Hodge
,
J. Non-Cryst. Solids
131–133
,
435
(
1991
);
(b)
I. M.
Hodge
and
A. R.
Berens
,
Macromolecules
15
,
756
(
1982
);
I. M.
Hodge
and
A. R.
Berens
,
Macromolecules
15
,
762
(
1982
).
130.
A. J.
Kovacs
,
Ann. (N.Y.) Acad. Sci.
371
,
38
(
1981
).
131.
Discussion section led by
G. B.
McKenna
and
C. A.
Angell
,
J. Non-Cryst. Solids
171–173
,
528
(
1991
).
132.
S. R.
Lustig
,
R. M.
Shay
, and
J. M.
Caruthers
,
J. Rheol.
40
,
69
(
1996
).
133.
R. W.
Rendell
,
C. R.
Fong
,
K. L.
Ngai
, and
J. J.
Aklonis
,
Macromolecules
20
,
1070
(
1987
).
134.
C. T.
Moynihan
,
J. Non-Cryst. Solids
172–174
,
1395
(
1994
);
C. T.
Moynihan
,
J. Non-Cryst. Solids
203
,
359
(
1996
).
135.
A. J.
Kovacs
,
Fortschr. Hochpolym.-Forsch.
3
,
394
(
1963
).
136.
G. B.
McKenna
,
Y.
Leterrier
, and
C. R.
Schultheisz
,
Polym. Eng. Sci.
35
,
403
(
1995
).
137.
L. C. E.
Struik
,
Polymer
38
,
4677
(
1997
).
138.
G. B.
McKenna
,
M. G.
Vangel
,
A. L.
Rukhin
,
S. D.
Leigh
,
B.
Lotz
, and
C.
Straupe
,
Polymer
40
,
5183
(
1999
).
139.
I. M.
Hodge
,
Mater. Res. Soc. Symp. Proc.
215
,
10
(
1991
);
I. M.
Hodge
,
J. Res. Natl. Inst. Stand. Technol.
102
,
195
(
1997
).
140.
K. L. Ngai and R. W. Rendell, in The Physics of Non-Crystalline Solids, edited by L. D. Pye, W. C. LaCourse, and H. J. Stevens (Taylor & Francis, London, 1992), p. 309.
141.
(a)
R.
Böhmer
,
J. Non-Cryst. Solids
172–174
,
623
(
1994
);
(b) R. Böhmer and C. A. Angell, in Disorder Effects on Relaxational Processes, edited by A. Blumen and R. Richert (Springer, Berlin, 1994), p. 11;
(c)
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
,
J. Chem. Phys.
99
,
4201
(
1993
).
142.
(a)
H.
Sasabe
and
C. T.
Moynihan
,
J. Polym. Sci., Polym. Phys. Ed.
16
,
1447
(
1978
);
(b)
A.
Weitz
and
B.
Wunderlich
,
J. Polym. Sci., Polym. Phys. Ed.
12
,
2473
(
1974
);
(c)
J.
Perez
,
J. Y.
Cavaille
,
R. D.
Calleja
,
J. L. G.
Ribelles
,
M. M.
Pradas
, and
A. R.
Greus
,
Macromol. Chem. Phys.
192
,
2141
(
1991
).
143.
(a)
E. F.
Oleinik
,
Polym. J. (Tokyo)
19
,
105
(
1987
);
(b)
K.
Adachi
and
T.
Kotaka
,
Polym. J. (Tokyo)
14
,
959
(
1982
);
(c)
J. M. G.
Cowie
,
S.
Elliott
,
R.
Ferguson
, and
R.
Simha
,
Polym. Commun.
29
,
298
(
1987
).
144.
L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, New York, 1978).
145.
R. J.
Roe
and
G. M.
Millman
,
Polym. Eng. Sci.
23
,
318
(
1983
).
146.
G. B.
McKenna
,
M. M.
Santore
,
A.
Lee
, and
R. S.
Duran
,
J. Non-Cryst. Solids
131–133
,
497
(
1991
).
147.
M. M.
Santore
,
R. S.
Duran
, and
G. B.
McKenna
,
Polymer
32
,
2377
(
1991
).
148.
G. B.
McKenna
,
J. Non-Cryst. Solids
172–174
,
756
(
1994
).
149.
G. B.
McKenna
,
J. Res. Natl. Inst. Stand. Technol.
99
,
169
(
1994
).
150.
C. R. Schultheisz, D. M. Colucci, G. B. McKenna, and J. M. Caruthers, in Mechanics of Plastics and Plastic Composites, edited by M. C. Boyce (American Society of Mechanical Engineers, 1995), p. 251.
151.
R. S.
Duran
and
G. B.
McKenna
,
J. Rheol.
34
,
813
(
1990
).
152.
M.
Delin
,
R. W.
Rychwalski
,
J.
Kubat
,
C.
Klason
, and
J. M.
Hutchinson
,
Polym. Eng. Sci.
36
,
2955
(
1996
).
153.
(a)
I.
Echeverria
,
P. C.
Su
,
S. L.
Simon
, and
D. J.
Plazek
,
J. Polym. Sci., Part B: Polym. Phys.
33
,
2457
(
1995
);
(b)
S. L.
Simon
,
D. J.
Plazek
,
J. W.
Sobieski
, and
E. T.
McGregor
,
J. Polym. Sci., Part B: Polym. Phys.
35
,
929
(
1997
).
154.
(a) M. Hemmati, C. T. Moynihan, and C. A. Angell, J. Chem. Phys. (submitted);
(b) G. Parisi, J. Phys. Chem. 103 (1999);
(c) W. Kob and F. Sciortino, J. Phys. Condensed Matter 12 (2000).
155.
G.
Rehage
and
G.
Goldbach
,
Rheol. Acta
6
,
30
(
1967
).
156.
J. E.
McKinney
and
H. V.
Belcher
,
J. Res. Natl. Bur. Stand., Sect. A
67
,
43
(
1963
).
157.
D. J.
Plazek
,
Polym. J. (Tokyo)
12
,
43
(
1980
).
158.
K. L.
Ngai
and
D. J.
Plazek
,
Rubber Chem. Technol.
68
,
376
(
1995
).
159.
O. V.
Mazurin
,
Yu. K.
Startsev
, and
S. V.
Stoljar
,
J. Non-Cryst. Solids
105
,
532
(
1982
).
160.
A.
Alegria
,
E.
Guerrica-Echevarria
,
L.
Goitianda
,
I.
Telleria
, and
J.
Colmenero
,
Macromolecules
28
,
1516
(
1995
).
161.
M.
Oguni
,
J. Non-Cryst. Solids
210
,
171
(
1997
).
162.
R. V.
Chamberlin
,
R.
Bohmer
,
E.
Sanchez
, and
C. A.
Angell
,
Phys. Rev. B
46
,
5787
(
1992
).
163.
R.
Böhmer
and
C. A.
Angell
,
Phys. Rev. B
45
,
10091
(
1992
).
164.
S.
Takahara
,
O.
Yamamuro
, and
T.
Matsuo
,
J. Phys. Chem.
99
,
9589
(
1995
).
165.
C.
Liu
and
C. A.
Angell
,
J. Chem. Phys.
93
,
7378
(
1990
).
166.
N. F.
Mott
,
Philos. Mag.
22
,
7
(
1970
);
Metal-Insulator Transitions (Taylor and Francis, London, 1974).
167.
J.
Kincs
and
S. W.
Martin
,
Phys. Rev. Lett.
76
,
70
(
1995
);
J. Kincs, M. S. thesis, Iowa State University, 1995.
168.
M. D.
Ingram
,
C. A.
Vincent
, and
A. R.
Wandless
,
J. Non-Cryst. Solids
53
,
73
(
1982
).
169.
K. L.
Ngai
and
A. K.
Rizos
,
Phys. Rev. Lett.
76
,
1296
(
1996
).
170.
P.
Maass
,
M.
Meyer
,
A.
Bunde
, and
W.
Dieterich
,
Phys. Rev. Lett.
77
,
1528
(
1996
).
171.
(a)
D.
Ravaine
and
J. L.
Souquet
,
Phys. Chem. Glasses
18
,
27
(
1977
);
(b)
R.
Boehmer
,
T.
Joerg
,
F.
Qi
, and
A.
Titze
,
Chem. Phys. Lett.
316
,
417
(
2000
).
172.
(a)
K.-L.
Ngai
,
Solid State Ionics
5
,
27
(
1981
);
(b)
S. W.
Martin
,
Mater. Chem. Phys.
23
,
225
(
1989
);
(c)
C. A.
Angell
,
Mater. Chem. Phys.
23
,
143
(
1989
);
C. A.
Angell
,
Chem. Rev.
90
,
523
(
1990
);
C. A.
Angell
,
Solid State Ionics
105
,
15
(
1998
);
(d)
K. L.
Ngai
,
J. Non-Cryst. Solids
203
,
232
(
1996
);
(e)
K. L.
Ngai
and
C. T.
Moynihan
,
Bull. Mater. Res. Soc.
23
,
51
(
1998
);
(f)
K. L.
Ngai
and
C.
Leon
,
Phys. Rev. B
60
,
9396
(
1999
).
173.
K. L.
Ngai
,
J. Chem. Phys.
110
,
10576
(
1999
).
174.
(a) M. Mao, Z. Altounian, and D. Ryan, J. Non-Cryst. Solids 205–207 (1996);
(b)
K.
Hoshino
,
R. S.
Averbach
,
H.
Hahn
, and
S. J.
Rothman
,
J. Mater. Res.
3
,
55
(
1998
);
(c)
W. L.
Johnson
,
Mater. Res. Soc. Bull.
24
,
42
(
2000
).
175.
M. J.
Pikal
and
S.
Shah
,
Int. J. Pharm.
62
,
165
(
1990
).
176.
(a)
D.
Girlich
and
H.-D.
Lüdemann
,
Z. Naturforsch. C
49c
,
258
(
1994
);
(b)
A.
Heinrich-Schramm
,
C.
Buttersack
, and
H. D.
Lüdemann
,
Carbohydrate Res.
293
,
205
(
1996
).
177.
S.
Roorda
,
W. C.
Sinke
,
J. M.
Poate
,
D. C.
Jacobsen
,
S.
Dierker
,
B. S.
Dennis
,
D. J.
Eaglesham
,
F.
Spaepen
, and
P.
Fuoss
,
Phys. Rev. B
44
,
3702
(
1991
).
178.
S.
Coffa
,
J. M.
Poate
,
D. C.
Jacobson
,
W.
Frank
, and
W.
Gustin
,
Phys. Rev. B
45
,
8355
(
1992
).
179.
P. A. Stolk, S. Coffa, and J. M. Poate, in Diffusion in Amorphous Materials, edited by H. Jain and D. Gupta (The Minerals, Metals and Materials Society, 1994), p. 177: It is likely that present experimental techniques could yield data for pure a-Si, and particularly for a-Ge, at the temperatures where they are about to crystallize, J. M. Poate (private communication).
180.
C. A.
Angell
,
Annu. Rev. Phys. Chem.
43
,
693
(
1992
).
181.
W.
Frank
,
Defect Diffus. Forum
75
,
121
(
1991
);
in Crucial Issues in Semiconductor Materials and Processing Technology, edited by S. Coffa, F. Priolo, E. Rimini, and J. M. Poate (Kluwer, Dordrecht, 1992), p. 383:
W.
Frank
,
W.
Gustin
, and
M.
Horz
,
J. Non-Cryst. Solids
205–207
,
208
(
1996
).
182.
(a)
S.
Roorda
,
W. C.
Sinke
,
J. M.
Poate
,
D. C.
Jacobson
,
S.
Dierker
,
B. S.
Dennis
,
D. J.
Eaglesham
,
F.
Spaepen
, and
P.
Fuoss
,
Phys. Rev. B
44
,
3702
(
1991
);
(b)
E. P.
Donovan
,
F.
Spaepen
,
J. M.
Poate
, and
D. C.
Jacobson
,
Appl. Phys. Lett.
55
,
1516
(
1989
);
(c)
E. P.
Donovan
,
F.
Spaepen
,
D.
Turnbull
,
J. M.
Poate
, and
D. C.
Jacobson
,
J. Appl. Phys.
57
,
1795
(
1985
).
183.
A.
Magistris
,
G.
Chiodelli
, and
M.
Duclot
,
Solid State Ionics
9/10
,
611
(
1983
).
184.
L.
Wu
,
J. Chem. Phys.
43
,
9906
(
1991
).
185.
A. P.
Sokolov
,
E.
Roessler
,
A.
Kisliuk
, and
D.
Quitman
,
Phys. Rev. Lett.
71
,
2062
(
1993
);
A. P.
Sokolov
,
A.
Kisliuk
,
D.
Quitmann
,
A.
Kudlik
, and
E.
Roessler
,
J. Non-Cryst. Solids
172–174
,
138
(
1994
).
186.
R.
Shuker
and
R. W.
Gammon
,
Phys. Rev. Lett.
25
,
222
(
1970
).
187.
(a)
D. J.
Plazek
and
K. L.
Ngai
,
Macromolecules
24
,
1222
(
1991
);
(b)
R.
Böhmer
and
C. A.
Angell
,
Phys. Rev. B
45
,
1009
(
1992
);
(c)
C. A.
Angell
,
L.
Monnerie
, and
L. M.
Torell
,
Mater. Res. Soc. Symp. Proc.
215
,
3
(
1991
).
188.
(a)
D.
Engberg
,
A.
Wischnewski
,
U.
Buchenau
,
L.
Borjesson
,
A. J.
Dianoux
,
A. P.
Sokolov
, and
L. M.
Torell
,
Phys. Rev. B
58
,
9088
(
1999
);
(b)
C. M.
Roland
and
K.
Ngai
,
J. Chem. Phys.
104
,
2697
(
1996
).
189.
K. L.
Ngai
,
A. P.
Sokolov
, and
W.
Steffen
,
J. Chem. Phys.
107
,
5268
(
1997
).
190.
F.
Viras
and
T. A.
King
,
J. Non-Cryst. Solids
119
,
65
(
1990
).
191.
J.
Colmenero
,
A.
Arbe
, and
A.
AlegrPa
,
Phys. Rev. Lett.
71
,
2603
(
1993
).
192.
E.
Duval
,
T.
Achibat
,
A.
Boukenter
,
B.
Varrel
,
R.
Calemczuk
, and
B.
Salce
,
J. Non-Cryst. Solids
190
,
258
(
1995
).
193.
E.
Duval
,
A.
Boukenter
, and
T.
Achibat
,
J. Phys.: Condens. Matter
2
,
10227
(
1990
).
194.
K. L. Ngai (unpublished, 1995).
195.
K. L.
Ngai
,
Macromolecules
24
,
4865
(
1991
).
196.
V. N.
Novikov
and
A. P.
Sokolov
,
Solid State Commun.
77
,
243
(
1991
).
197.
A. J.
Martin
and
W.
Brenig
,
Phys. Status Solidi
64
,
163
(
1974
).
198.
S. R.
Elliott
,
Europhys. Lett.
19
,
210
(
1992
).
199.
M.
Foley
,
M.
Wilson
, and
P. A.
Madden
,
Philos. Mag. B
71
,
557
(
1995
).
200.
(a)
L.
Borjesson
,
A. K.
Hassan
,
J.
Swenson
, and
L. M.
Torell
,
Phys. Rev. Lett.
70
,
1275
(
1991
);
(b)
L.
Borjesson
,
A. K.
Hassan
,
J.
Swenson
, and
L. M.
Torell
,
Phys. Rev. Lett.
70
,
4027
(
1993
).
201.
V. K.
Malinovsky
,
V. N.
Novikov
,
P. P.
Parshin
,
A. P.
Sokolov
, and
M. G.
Zemlyanov
,
Europhys. Lett.
11
,
43
(
1990
).
202.
J. E.
Graebner
,
B.
Golding
, and
J. C.
Allen
,
Phys. Rev. B
34
,
5696
(
1986
).
203.
V. L.
Gurevich
,
D. A.
Parshin
,
J.
Pelous
, and
H. R.
Schober
,
Phys. Rev. B
48
,
16318
(
1993
).
204.
R. J.
Roe
,
J. Chem. Phys.
100
,
1610
(
1994
).
205.
A. V.
Granato
,
Physica B
219&220
,
270
(
1996
).
206.
(a) K. Smith, G. H. Wolf, and P. F. McMillan (unpublished);
(b) C. Polsky, M. Verhelst, and G. H. Wolf (unpublished);
(c) J. Shao and C. A. Angell, Proc. XVIIth Internat. Congress on Glass 1995, edited by Gong Fanglian (International Academic Publishers, Beijing, 1995), Vol. 1, p. 311;
(d)
C. A.
Angell
,
Comput. Mater. Sci.
4
,
285
(
1995
).
207.
J.
Horbach
,
W.
Kob
,
K.
Binder
, and
C. A.
Angell
,
Phys. Rev. Rapid Pub. E
54
,
5897
(
1996
).
208.
J.
Horbach
,
W.
Kob
, and
K.
Binder
,
Neutrons and Numerical Methods
, edited by
M. R.
Johnson
,
G. J.
Kearley
, and
H. J.
Büttner
,
AIP Conference Proceedings
479
(
AIP
,
Woodbury
,
1999
), p.
131
.
209.
A. P.
Sokolov
,
U.
Buchenau
,
W.
Steffen
,
B.
Frick
, and
A.
Wischnewski
,
Phys. Rev. B
52
,
R9815
(
1995
).
210.
G.
Winterling
,
Phys. Rev. B
12
,
2432
(
1975
);
V. Z.
Godhiyaev
et al.,
Philos. Mag. B
63
,
777
(
1991
);
A. P.
Sokolov
et al.,
J. Non-Cryst. Solids
172–174
,
138
(
1994
).
211.
J.
Colmenero
,
A.
Arbe
, and
A.
Algeria
,
Phys. Rev. Lett.
71
,
2603
(
1993
).
212.
(a)
K. L.
Ngai
,
J.
Colmenero
,
A.
Algeria
, and
A.
Arbe
,
Macromolecules
25
,
6727
(
1992
);
(b)
C. M.
Roland
and
K. L.
Ngai
,
J. Chem. Phys.
104
,
2967
(
1996
).
213.
This is best seen in the 〈r2 vs t behavior discussed in the next section. In molecular dynamic studies of ionic glasses like BeF2 the linear increase in 〈r2 vs t which appears as a Debye relaxation in the fragile liquid studies (194) develop dips which can be exaggerated by artificially manipulating the ionic masses to exaggerate the difference between cations and anions [J. Shao (unpublished)].
214.
U.
Buchenau
and
R.
Zorn
,
Europhys. Lett.
18
,
523
(
1992
).
215.
F. A.
Lindemann
,
Phys. Z.
11
,
609
(
1911
).
216.
B.
Frick
and
D.
Richter
,
Phys. Rev. B
47
,
14795
(
1993
).
217.
(a)
W.
Doster
,
S.
Cusak
, and
W.
Petry
,
Nature (London)
337
,
754
(
1989
);
(b)
F.
Parak
,
J.
Heidemeier
, and
G. U.
Nienhaus
,
Hyperfine Interact.
40
,
147
(
1988
).
218.
A.
Petry
et al.,
Phys. B. Condens. Mater.
83
,
175
(
1991
).
219.
(a)
H.
Kawamura
et al.,
Solid State Commun.
43
,
229
(
1982
);
(b)
V. K.
Malinovsky
and
A. P.
Sokolov
,
Solid State Commun.
57
,
757
(
1986
);
(c)
V. Z.
Gochiyaev
and
A. P.
Sokolov
,
Sov. Phys. Solid State
31
,
557
(
1989
);
(d)
S. L.
Isakov
,
S. N.
Ishmaev
,
V. K.
Malinovsky
,
V. N.
Novikov
,
P. P.
Parshin
,
S. N.
Popov
,
A. P.
Sokolov
, and
M. G.
Zemlyanov
,
Solid State Commun.
86
,
123
(
1993
).
220.
(a)
M.
Elmroth
,
L.
Borjesson
, and
L. M.
Torrell
,
Phys. Rev. Lett.
68
,
79
(
1992
);
(b)
D.
Engberg
,
L.
Borjesson
,
J.
Swensson
,
L. M.
Torrell
,
W. S.
Howells
, and
A.
Wannberg
,
Europhysics
47
,
213
(
1999
).
221.
(a)
G.
Li
,
M.
Fuchs
,
W. M.
Du
,
A.
Latz
,
N. J.
Tao
,
J.
Hernandez
,
W.
Gotze
, and
H. Z.
Cummins
,
J. Non-Cryst. Solids
172–174
,
43
(
1994
);
(b)
W. M.
Du
,
G.
Li
,
H. Z.
Cummins
,
M.
Fuchs
,
J.
Toulouse
, and
L. A.
Knauss
,
Phys. Rev. E
49
,
2192
(
1994
).
222.
Y.
Yang
and
K. A.
Nelson
,
ACS Symp. Ser.
676
,
181
(
1997
).
223.
S. R.
Nagel
,
G. S.
Grest
, and
A.
Rahman
,
Phys. Rev. Lett.
53
,
368
(
1984
).
224.
B. B.
Laird
and
H. R.
Schober
,
Phys. Rev. Lett.
66
,
636
(
1991
).
225.
L. D.
Van Ee
,
B. J.
Thijsse
, and
J.
Sietsma
,
J. Non-Cryst. Solids
205–207
,
641
(
1997
).
226.
V.
Mazzacurati
,
G.
Ruocco
, and
M.
Sampoli
,
Europhys. Lett.
34
,
681
(
1996
).
227.
(a) P. Lunkenheimer, Dielectric Spectroscopy of Glassy Dynamics (Shaker, Aachen, 1999), and additional references cited below;
(b)
P.
Lunkenheimer
,
U. R.
Brand
, and
A.
Loidl
,
Contemp. Phys.
41
,
15
(
2000
).
228.
F.
Sette
,
M.
Krisch
,
C.
Masciovecchio
,
G.
Ruocco
, and
G.
Monaco
,
Science
280
,
1550
(
1998
).