A detailed formula for the equivalent pyroelectric coefficient of a bimorph structure acting as a pyroelectric detector was deduced. It is shown that electric fields occur in the structure when it is subjected to a temperature variation, due to the unequal charges generated by the two components. The field dependence of the ferroelectric polarization has to be considered in this case and the (∂P/∂E) derivative appears explicitly in the deduced formula. The effect is that the equivalent pyroelectric coefficient has different values for heating and cooling. This could lead to a redressing effect on the pyroelectric signal if the temperature difference varies periodically. The equivalent pyroelectric coefficient is, also, thickness dependent. This fact offers the possibility of designing structures with high values of pyroelectric coefficient compared with the values of the component phases.

1.
S. G.
Porter
,
Ferroelectrics
33
,
193
(
1981
).
2.
R.
Watton
,
Ferroelectrics
91
,
87
(
1989
).
3.
A. M. Glass and M. E. Lines, Principle and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).
4.
S. B. Lang, Source-Book of Pyroelectricity (Gordon and Breach, London, 1974).
5.
B. Jaffe, Piezoelectric Ceramics (Academic, London, 1971).
6.
Landolt-Bornstein, Ferroelectric Crystals (Springer, Berlin, 1979).
7.
G. H.
Haertling
,
Ferroelectrics
75
,
25
(
1987
).
8.
J.
Handerek
,
Z.
Ujma
,
C.
Carabatos-Nedelec
,
G. E.
Kigel
,
D.
Dmytrow
, and
I.
El-Harrad
,
J. Appl. Phys.
73
,
367
(
1993
).
9.
H.
Vogt
,
P.
Wurfel
,
U.
Hetzler
, and
W.
Rupel
,
Ferroelectrics
33
,
243
(
1981
).
10.
R. B.
Holleman
,
Infrared Phys.
12
,
125
(
1972
).
11.
B.
Ploss
and
S.
Bauer
,
Sen. Actuators
25
,
27
(
1991
).
12.
S. T.
Liu
,
J. D.
Heaps
, and
O. N.
Tufte
,
Ferroelectrics
3
,
281
(
1972
).
13.
W. B.
Harrison
and
S. T.
Liu
,
Ferroelectrics
27
,
125
(
1980
).
14.
R. E.
Newnham
and
D. P.
Skinner
,
Ferroelectrics
27
,
49
(
1980
).
15.
H.
Zewdie
,
J. Appl. Phys.
68
,
713
(
1990
).
16.
Y.
Wang
,
W.
Zhong
, and
P.
Zhang
,
J. Appl. Phys.
74
,
521
(
1993
).
17.
L. Pintilie and C. Constantin, Proc. “AUSTCERAM’94”, 25–27 July, Sidney, Australia, 1994, p. 439.
18.
L.
Pintilie
,
Proc. MRS
-Fall Meeting,
357
,
413
(
1995
).
19.
M.
Alexe
and
L.
Pintilie
,
Infrared Phys. Technol.
36
,
949
(
1995
).
20.
L.
Pintilie
and
C.
Constantin
,
Ferroelectrics
173
,
111
(
1995
).
21.
L.
Pintilie
and
I.
Pintilie
,
Ferroelectrics
200
,
219
(
1997
).
22.
Y.
Ohya
,
T.
Ito
, and
Y.
Takahashi
,
Jpn. J. Appl. Phys., Part 1
33
,
5272
(
1994
).
23.
J. V.
Mantese
,
N. W.
Schubring
,
A. L.
Micheli
, and
A. B.
Catalan
,
Appl. Phys. Lett.
67
,
721
(
1995
).
24.
J. V.
Mantese
,
N. W.
Schubring
,
A. L.
Micheli
, and
A. B.
Catalan
,
Appl. Phys. Lett.
71
,
2047
(
1997
).
25.
D.
Liufu
and
K. C.
Kao
,
J. Appl. Phys.
85
,
1089
(
1999
).
26.
S. L.
Milnes
,
J. R.
Schwank
,
R. D.
Nasby
, and
M. S.
Rodgers
,
J. Appl. Phys.
70
,
2849
(
1991
).
27.
S. L.
Miller
,
R. D.
Nasby
,
J. R.
Schwank
,
M. S.
Rodgers
, and
P. V.
Dressendorfer
,
J. Appl. Phys.
68
,
6463
(
1990
).
28.
R. E.
Newnham
,
D. P.
Skinner
, and
L. E.
Cross
,
Mater. Res. Bull.
13
,
525
(
1978
).
29.
G. W.
Milton
,
J. Appl. Phys.
38
,
925
(
1981
).
30.
E. R. G. Eckert, Heat and Mass Transfer (McGraw–Hill, New York, 1959).
This content is only available via PDF.
You do not currently have access to this content.