The peripheral reverse current Ip in silicon p–n junctions sets the leakage and standby power limits in modern integrated circuits. In order to study its origin more in depth, a detailed analysis of the reverse current through a gated diode is developed here. In particular, it is shown that the study of the reverse current component associated with the thick field oxide under depletion and inversion provides a sensitive tool. In addition, combining the gate bias dependence with the temperature variation of the reverse gated diode current allows us to identify its different components, namely, the diffusion JpDIF, the depletion region generation JpGENblk, and the surface generation current density JpGENsrf. Based on this analysis, it is demonstrated that the peripheral diffusion current shows a remarkable increase with gate bias VG, while for standard diodes an increase with the reverse voltage VR is revealed. This bias dependence has to be taken into account when studying the activation energy of the diffusion and generation parts of the peripheral current. It is finally demonstrated that the proposed gated-diode analysis of the peripheral diode current is markedly more sensitive than analysis of the standard p–n junctions with a large perimeter.

1.
A.
Czerwinski
,
E.
Simoen
, and
C.
Claeys
,
Appl. Phys. Lett.
72
,
3503
(
1998
).
2.
H.
Aharoni
,
T.
Ohmi
,
M. M.
Oka
,
A.
Nakada
, and
Y.
Tamai
,
J. Appl. Phys.
81
,
1270
(
1997
).
3.
E.
Simoen
,
C.
Claeys
,
A.
Czerwinski
, and
J.
Katcki
,
Appl. Phys. Lett.
72
,
1054
(
1998
).
4.
A.
Czerwinski
,
E.
Simoen
,
C.
Claeys
,
K.
Klima
,
D.
Tomaszewski
,
J.
Gibki
, and
J.
Katcki
,
J. Electrochem. Soc.
145
,
2107
(
1998
).
5.
H.-D.
Lee
,
S.-G.
Lee
,
S.-H.
Lee
,
Y.-J.
Lee
, and
J.-M.
Hwang
,
Jpn. J. Appl. Phys., Part 1
37
,
1179
(
1998
).
6.
C.
Claeys
,
A.
Poyai
,
E.
Simoen
,
A.
Czerwinski
, and
J.
Katcki
,
J. Electrochem. Soc.
146
,
1151
(
1999
).
7.
J.
Vanhellemont
,
E.
Simoen
,
A.
Kaniava
,
M.
Libezny
, and
C.
Claeys
,
J. Appl. Phys.
77
,
5669
(
1995
).
8.
D. K. Schroder, Semiconductor Materials and Device Characterization (Wiley, New York, 1990).
9.
G. A.
Hawkins
,
E. A.
Trabka
,
R. L.
Nielsen
, and
B. C.
Burkey
,
IEEE Trans. Electron Devices
32
,
1806
(
1985
).
10.
A. B.
Sproul
and
M. A.
Green
,
J. Appl. Phys.
73
,
1214
(
1993
).
11.
M. J. J.
Theunissen
and
F. J.
List
,
Solid-State Electron.
28
,
417
(
1985
).
12.
C. T.
Wang
,
Solid-State Electron.
20
,
967
(
1977
).
13.
N. S.
Saks
,
IEEE Electron Device Lett.
1
,
131
(
1980
).
14.
A.
Czerwinski
,
Appl. Phys. Lett.
75
,
3971
(
1999
).
15.
F.
Hurkx
,
H. L.
Peek
,
J. W.
Slotboom
, and
R. A.
Windgassen
,
IEEE Trans. Electron Devices
40
,
2273
(
1993
).
16.
P.
Smeys
,
P. B.
Griffin
,
Z. U.
Rek
,
I.
DeWolf
, and
K. C.
Saraswat
,
IEEE Trans. Electron Devices
46
,
1245
(
1999
).
17.
D. B.
Klaassen
,
J. W.
Slotboom
, and
H. C.
de Graaff
,
Solid-State Electron.
35
,
125
(
1992
).
18.
O.
Flament
,
J. L.
Autran
,
P.
Paillet
,
P.
Roche
,
O.
Faynot
, and
R.
Truche
,
IEEE Trans. Nucl. Sci.
44
,
1930
(
1997
).
19.
Y.
Murakami
and
T.
Shingyouji
,
J. Appl. Phys.
75
,
3548
(
1994
).
20.
A. Czerwinski, E. Simoen, A. Poyai, and C. Claeys, in Proceeding of the Symposium on Defects in Silicon, edited by T. Abe, W. M. Bullis, S. Kobayashi, W. Lin, and P. Wagner (Electrochem. Soc., New York, 1999), pp. 88–99.
21.
E. L.
Heasell
,
IEEE Trans. Electron Devices
27
,
1771
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.