GaN epilayers and GaN/AlGaN quantum wells (QWs) were grown by molecular beam epitaxy on GaN(0001) single crystal substrates. Transmission electron microscopy (TEM) was used to assess the crystal quality of the homoepitaxial layers. A dislocation density of less than 105cm−2 is deduced from TEM imaging. Low temperature (1.8 K) photoluminescence (PL) of homoepitaxial GaN reveals PL linewidths as low as 0.3 meV for bound excitons. The PL integrated intensity variation between 10 and 300 K is compared to that observed on a typical heteroepitaxial GaN/Al2O3 layer. A 2 nm thick GaN/Al0.1Ga0.9N QW has been studied by time-resolved and continuous wave PL. The decay time is close to a purely radiative decay, as expected for a low defect density. Finally, the built-in polarization field measured in a homoepitaxial QW is shown to be comparable to that measured on heteroepitaxial QWs grown either on sapphire or silicon substrates.

1.
For a review, see Group III Nitride Semiconductor Compounds, edited by B. Gil (Clarendon, Oxford, 1998).
2.
S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
3.
H.
Amano
,
N.
Sawaki
,
I.
Akasaki
, and
Y.
Toyoda
,
Appl. Phys. Lett.
48
,
353
(
1986
).
4.
S.
Nakamura
,
Semicond. Sci. Technol.
14
,
R27
(
1999
).
5.
T.
Suski
et al.,
Mater. Res. Soc. Symp. Proc.
482
,
949
(
1998
).
6.
J.
Karpinski
,
J.
Jun
, and
S.
Porowski
,
J. Cryst. Growth
66
,
1
(
1984
).
7.
I.
Grzegory
and
S.
Porowski
, “
Properties, processing and applications of Gallium Nitride and Related Semiconductors
,”
EMIS Datarev. Ser.
23
,
359
(
1999
).
8.
J. L.
Weyher
,
S.
Müller
,
I.
Grzegory
, and
S.
Porowski
,
J. Cryst. Growth
182
,
17
(
1997
).
9.
N.
Grandjean
,
J.
Massies
,
P.
Vennéguès
,
M.
Leroux
,
F.
Demangeot
,
M.
Renucci
, and
J.
Frandon
,
J. Appl. Phys.
83
,
1379
(
1998
).
10.
J. L. Weyher, P. D. Brown, J. L. Rouviere, T. Wosinski, A. R. A. Zauner, and I. Grzegory, J. Cryst. Growth (in press).
11.
Gassmann
et al.,
J. Appl. Phys.
80
,
2195
(
1996
).
12.
J. L.
Weyher
et al.,
J. Cryst. Growth
204
,
419
(
1999
).
13.
M.
Mayer
et al.,
Jpn. J. Appl. Phys., Part 2
36
,
L1634
(
1997
).
14.
C.
Kirchner
et al.,
Appl. Phys. Lett.
75
,
1098
(
1999
).
15.
H. M.
Ng
,
D.
Doppalapudi
,
T. D.
Moustakas
,
N. G.
Weimann
, and
L. F.
Eastman
,
Appl. Phys. Lett.
73
,
821
(
1997
).
16.
M.
Leroux
,
N.
Grandjean
,
B.
Beaumont
,
G.
Nataf
,
F.
Semond
,
J.
Massies
, and
P.
Gibart
,
J. Appl. Phys.
86
,
3721
(
1999
).
17.
T.
Sugahara
et al.,
Jpn. J. Appl. Phys., Part 2
37
,
L398
(
1998
).
18.
N.
Grandjean
and
J.
Massies
,
Appl. Phys. Lett.
71
,
1816
(
1997
).
19.
J. S.
Im
,
H.
Kollmer
,
J.
Off
,
A.
Sohmer
,
F.
Scholz
, and
A.
Hangleiter
,
Phys. Rev. B
57
,
R9435
(
1998
).
20.
N.
Grandjean
,
B.
Damilano
,
S.
Dalmasso
,
M.
Leroux
,
M.
Laügt
, and
J.
Massies
,
J. Appl. Phys.
86
,
3714
(
1999
).
21.
M.
Leroux
,
N.
Grandjean
,
M.
Laügt
,
J.
Massies
,
B.
Gil
,
P.
Lefebvre
, and
P.
Bigenwald
,
Phys. Rev. B
58
,
R13371
(
1998
).
22.
P.
Lefebvre
et al.,
Phys. Status Solidi B
216
,
361
(
1999
).
23.
F.
Semond
,
B.
Damilano
,
S.
Vézian
,
N.
Grandjean
,
M.
Leroux
, and
J.
Massies
,
Phys. Status Solidi B
216
,
101
(
1999
).
24.
N.
Grandjean
,
B.
Damilano
,
S.
Dalmasso
,
M.
Leroux
,
M.
Laügt
, and
J.
Massies
,
Phys. Status Solidi A
176
,
219
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.