The yield stress of magnetorheological (MR) fluids depends on the induced solid structure. Since thick columns have a yield stress much higher than a single-chain structure, we improve the yield stress of MR fluids by changing the fluid microstructure. Immediately after a magnetic field is applied, we compress the MR fluid along the field direction. Scanning electron microscopy images show that particle chains are pushed together to form thick columns. The shear force measured after the compression shows that the structure-enhanced static yield stress can reach as high as 800 kPa under a moderate magnetic field, while the same MR fluid has a yield stress of 80 kPa without compression. This improved yield stress increases with the magnetic field and compression pressure and has an upper limit well above 800 kPa. The method may also be useful for electrorheological fluids.

1.
For example, see Electrorheological Fluids, Magnetorheological Suspensions and their Applications, edited by M. Nakano and K. Koyama (World Scientific, Singapore, 1999);
Electrorheological Fluids, Magnetorheological Suspensions and Associated Technology, edited by W. A. Bullough (World Scientific, Singapore, 1996);
Electrorheological Fluids, edited by R. Tao and G. D. Roy (World Scientific, Singapore, 1994).
2.
J. D. Carlson and M. J. Chrzan, U.S. Patent No. 5 277 282 (1994),
J. D. Carlson, M. J. Chrzan, and F. O. James, U.S. Patent No. 5 284 330 (1994);
O.
Ashour
,
C. A.
Rogers
, and
W.
Kordonsky
,
J. Intell. Mater. Syst. Struct.
7
,
123
(
1996
).
3.
D. I.
Hartsock
,
R. F.
Novak
, and
G. J.
Chaundy
,
J. Rheol.
35
,
1305
(
1991
).
4.
J. D.
Carlson
,
D. M.
Catanzarite
, and
K. A.
St. Clair
,
Int. J. Mod. Phys. B
10
,
2857
(
1996
);
W. I.
Kordonsky
and
S. D.
Jacobs
,
Int. J. Mod. Phys. B
10
,
2837
(
1996
).
5.
J. M.
Ginder
and
L. C.
Davis
,
Appl. Phys. Lett.
65
,
3410
(
1994
).
6.
P. P. Phule and J. M. Ginder, in Electrorheological Fluids, Magnetorheological Suspensions and their Applications, edited by M. Nakano and K. Koyama (World Scientific, Singapore, 1999), p. 445.
7.
J. M. Ginder and J. L. Sproston, Proceedings of the Fifth International Conference On New Actuators, edited by H. Borgmann (Axon Technologie Constult, Bremen, Germany, 1996), p. 313.
8.
R.
Tao
and
J. M.
Sun
,
Phys. Rev. Lett.
67
,
398
(
1991
).
9.
T. J.
Chen
,
R. N.
Zitter
, and
R.
Tao
,
Phys. Rev. Lett.
68
,
2555
(
1992
).
10.
L.
Zhou
,
W.
Wen
, and
P.
Sheng
,
Phys. Rev. Lett.
81
,
1509
(
1998
).
11.
G. L.
Gulley
and
R.
Tao
,
Phys. Rev. E
48
,
2744
(
1993
).
12.
X.
Tang
,
Y.
Chen
, and
H.
Conrad
,
J. Intell. Mater. Syst. Struct.
7
,
517
(
1996
).
13.
S. S. Vyalov, Rheological Fundamentals of Soil Mechanics (Elsevier, New York, 1986), pp. 100–107.
14.
J. J. Tuma and M. Abdel-Hady, Engineering Soil Mechanics (Prentice–Hall, Englewood Cliffs, NJ, 1973), pp. 207–209.
15.
R. E.
Rosensweig
,
J. Rheol.
39
,
179
(
1995
).
16.
E.
Lemaire
and
G.
Bossis
,
J. Phys. D
24
,
1473
(
1991
).
17.
T.
Miyamoto
and
M.
Ota
,
Appl. Phys. Lett.
64
,
1165
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.