The bulk wave, which is radiated into the substrate from the leaky surface acoustic wave (LSAW), can be suppressed by loading the substrate with a thin film of dielectric such as tantalum pentoxide (Ta2O5) and silicon dioxide (SiO2). Rotated Y-cut X-propagating lithium niobate (LiNbO3) is used for the substrate. For a certain range of the rotation angle, the attenuation of the LSAW can be suppressed by choosing the appropriate material and thickness for the film. For the free surface of 64° Y−XLiNbO3 with Ta2O5 film, and the metallized surface of 41° Y−XLiNbO3 with SiO2 film, the measured propagation losses decreased approximately to one-fourth to half of that of the sample without the thin film. It is shown that, even if the propagation path is a free surface, the particle displacement distribution in the LSAW is concentrated near the substrate surface by the loading with the thin film, as for the metallized surface. This result suggests that the bulk wave radiation in the LSAW excitation can be suppressed. The bulk wave radiation loss for the 41° Y−XLiNbO3 with the Ta2O5 film decreased approximately to one-sixth of that of the sample without the thin film.

1.
T. C.
Lim
and
G. W.
Farnell
,
J. Acoust. Soc. Am.
45
,
845
(
1969
).
2.
K.
Yamanouchi
and
K.
Shibayama
,
J. Appl. Phys.
43
,
856
(
1972
).
3.
K. Nakamura, M. Kazumi, and H. Shimizu, IEEE Proceedings on Ultrasonics Symposium, 1977, p. 819.
4.
Y.
Shimizu
,
Y.
Endo
, and
T.
Watanabe
,
Jpn. J. Appl. Phys., Part 1
26
,
162
(
1986
).
5.
Y.
Shimizu
and
K.
Murakami
,
Trans.(C) IEICEJ
J69-C
,
1309
(
1986
) (in Japanese).
6.
R. M.
White
and
F. W.
Voltmer
,
Appl. Phys. Lett.
7
,
314
(
1965
).
7.
K. H.
Yen
,
K. L.
Wang
, and
R. S.
Kagiwada
,
Electron. Lett.
13
,
37
(
1977
).
8.
T. I.
Browing
and
M. F.
Levis
,
Electron. Lett.
13
,
128
(
1977
).
9.
M. F. Levis, IEEE Proceedings on Ultrasonics Symposium, 1977, p. 744.
10.
A.
Balloto
and
T. J.
Lukaszek
,
IEEE Trans. Sonics Ultrason.
SU-27
,
1004
(
1980
).
11.
P. D. Bloch, N. D. Doe, E. G. S. Paige, and M. Yamaguchi, IEEE Proceedings on Ultrasonics Symposium, 1981, p. 268.
12.
R. F.
Mitchell
and
E.
Read
,
IEEE Trans. Sonics Ultrason.
SU-22
,
264
(
1975
).
13.
R. F.
Milsom
,
N. H. C.
Reilly
, and
M.
Redwood
,
IEEE Trans. Sonics Ultrason.
SU-24
,
147
(
1978
).
14.
C. N. Helmik, Jr., D. J. White, and K. M. Lakin, IEEE Proceedings on Ultrasonics Symposium, 1981, p. 280.
15.
M. Yamaguchi, K. Y. Hashimoto, K. Uzawa, and H. Kogo, IEEE Proceedings on Ultrasonics Symposium, 1983, p. 543.
16.
S.
Kakio
and
Y.
Nakagawa
,
Jpn. J. Appl. Phys., Part 1
36
,
3064
(
1997
).
17.
S.
Kakio
,
K.
Aoyama
, and
Y.
Nakagawa
,
Trans.(A) IEICEJ
J80-A
,
1830
(
1997
) (in Japanese);
Proceedings of World Congress on Ultrasonics, 2CP3, 1997, p. 348.
18.
F. S. Hickernell, H. D. Knuth, R. C. Dablemont, and T. S. Hickernell, IEEE Proceedings on Ultrasonic Symposium, 1995, p. 345.
19.
G. W. Farnell and E. L. Adler, in Physical Acoustics, edited by W. P. Mason and R. N. Thurston, (Academic, New York and London, 1972).
20.
J. J.
Campbell
and
W. R.
Jones
,
IEEE Trans. Sonics Ultrason.
SU-15
,
209
(
1968
).
21.
Q.
Xue
and
Y.
Shui
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
UFFC-37
,
13
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.