We have studied charge injection and charge transport in thin disordered films of CdSe nanocrystals between metal electrodes. Current–voltage characteristics of these devices are investigated as a function of electrode material, nanocrystal size, and temperature. We measure the photocurrent response of these structures and find that the photocurrent action spectra follow the quantum-confined absorption spectra of the nanoparticles. For dissimilar top and bottom electrodes, we find that the devices are highly rectifying. High work function materials such as gold and indium-tin oxide are found to be poor electron injectors, consistent with the estimated conduction and valence band levels of the nanocrystals. We observe that the current–voltage characteristics exhibit a history and time dependence which is characteristic of persistent photoconductivity, with current at constant bias decaying with time according to a stretched exponential form. We propose a model based on space-charge limited current dominated by mobile electrons which slowly fill deep traps. Numerical simulations show that the model is able to describe the observed time dependence. We also find that the conductivity is strongly temperature dependent, and is qualitatively consistent with an activated hopping process at temperatures above 180 K. We use the data and simulations to estimate the electron mobilities to be in the range of ∼10−4–10−6cm2V−1s−1 and the trap densities to be approximately 2×1016cm−3.

1.
R. T.
Collins
,
P. M.
Fauchet
, and
M. A.
Tischler
,
Phys. Today
50
,
24
(
1997
).
2.
B.
O’Regan
and
M.
Grätzel
,
Nature (London)
353
,
737
(
1991
).
3.
U.
Bach
,
D.
Lupo
,
P.
Comte
,
J. E.
Moser
,
F.
Weissortel
,
J.
Salbeck
,
H.
Spreitzer
, and
M.
Grätzel
,
Nature (London)
395
,
583
(
1998
).
4.
C. B.
Murray
,
D. J.
Norris
, and
M. G.
Bawendi
,
J. Am. Chem. Soc.
15
,
8706
(
1993
).
5.
J. E. B.
Katari
,
V. L.
Colvin
, and
A. P.
Alivisatos
,
J. Phys. Chem.
98
,
4109
(
1994
).
6.
N. C.
Greenham
,
X.
Peng
, and
A. P.
Alivisatos
,
Phys. Rev. B
54
,
17628
(
1996
).
7.
V. L.
Colvin
,
M. C.
Schlamp
, and
A. P.
Alivisatos
,
Nature (London)
370
,
354
(
1994
).
8.
B. O.
Dabbousi
,
M. G.
Bawendi
,
O.
Onitsuka
, and
M. F.
Rubner
,
Appl. Phys. Lett.
66
,
1316
(
1995
).
9.
M. C.
Schlamp
,
X.
Peng
, and
A. P.
Alivisatos
,
J. Appl. Phys.
82
,
5837
(
1997
).
10.
H.
Mattoussi
,
L. H.
Radzilowski
,
B. O.
Dabbousi
,
E. L.
Thomas
,
M. G.
Bawendi
, and
M. F.
Rubner
,
J. Appl. Phys.
83
,
7965
(
1998
).
11.
A. D.
Yoffe
,
Adv. Phys.
42
,
173
(
1993
).
12.
A. P.
Alivisatos
,
Science
271
,
933
(
1996
).
13.
D. L.
Klein
,
P. L.
McEuen
,
J. E. B.
Katari
,
R.
Roth
, and
A. P.
Alivisatos
,
Appl. Phys. Lett.
68
,
2574
(
1996
).
14.
D. L.
Klein
,
R.
Roth
,
A. K. L.
Lim
,
A. P.
Alivisatos
, and
P. L.
McEuen
,
Nature (London)
389
,
699
(
1997
).
15.
D. B.
Janes
,
V. R.
Kolagunta
,
R. G.
Osifchin
,
J. D.
Bielefeld
,
R. P.
Andres
,
J. I.
Henderson
, and
C. P.
Kubiak
,
Superlattices Microstruct.
18
,
275
(
1995
).
16.
R. P.
Andres
,
J. D.
Bielefeld
,
J. I.
Henderson
,
D. B.
Janes
,
V. R.
Kolagunta
,
C. P.
Kubiak
,
W. J.
Mahoney
, and
R. G.
Osifchin
,
Science
273
,
1690
(
1996
).
17.
M.
Brust
,
D.
Bethell
,
D. J.
Schiffrin
, and
C. J.
Kiely
,
Adv. Mater.
7
,
795
(
1995
).
18.
M. V.
Artemyev
,
V.
Sperling
, and
U.
Woggon
,
J. Appl. Phys.
81
,
6975
(
1997
).
19.
M.
Brust
,
D.
Bethell
,
C. J.
Kiely
, and
D. J.
Schiffrin
,
Langmuir
14
,
5425
(
1998
).
20.
C. A. Leatherdale, C. R. Kagan, M. A. Kastner, and M. G. Bawendi, Abstracts of Papers of the American Chemical Society 213, 319-PHYS (1997).
21.
M. Y.
Shen
,
M.
Oda
, and
T.
Goto
,
Phys. Rev. Lett.
82
,
3915
(
1999
).
22.
J. S.
Kim
,
M.
Granstrom
,
R. H.
Friend
,
N.
Johansson
,
W. R.
Salaneck
,
R.
Daik
,
W. J.
Feast
, and
F.
Cacialli
,
J. Appl. Phys.
84
,
6859
(
1998
).
23.
R.
Kohlrausch
,
Ann. Phys. (Leipzig)
12
,
393
(
1847
).
24.
H. B. Michaelson, in CRC Handbook of Chemistry and Physics, 66th ed., edited by R. C. Weast, M. J. Astle, and W. H. Beyer (CRC Press, Boca Raton, 1985), p. E-86.
25.
N.
Nirmal
,
B. O.
Dabbousi
,
M. G.
Bawendi
,
J. J.
Macklin
,
J. K.
Trautman
,
T. D.
Harris
, and
L. E.
Brus
,
Nature (London)
383
,
802
(
1996
).
26.
R. V.
Chamberlin
,
G.
Mozurkewich
, and
R.
Orbach
,
Phys. Rev. Lett.
52
,
867
(
1984
).
27.
B.
Dulieu
,
J.
Wery
,
S.
Lefrant
, and
J.
Bullot
,
Phys. Rev. B
57
,
9118
(
1998
).
28.
G.
Beadie
,
E.
Sauvain
,
A. S. L.
Gomes
, and
N. M.
Lawandy
,
Phys. Rev. B
51
,
2180
(
1995
).
29.
J. C.
Fan
,
Y. J.
Lin
,
Y. F.
Chen
,
M. C.
Chen
, and
H. H.
Lin
,
J. Appl. Phys.
84
,
5351
(
1998
).
30.
J. C.
Rasaiah
,
J.
Zhu
,
J. B.
Hubbard
, and
R. J.
Rubin
,
J. Chem. Phys.
93
,
5768
(
1990
).
31.
J. C.
Phillips
,
Rep. Prog. Phys.
59
,
1133
(
1996
).
32.
When carrying out the simulations, we have always set the diffusion constant, D, to be a fixed function of the mobility, μ, as given by the Einstein relationship for bulk semiconductors and assuming a temperature of 300 K.
33.
For all calculations we have assumed an effective permittivity of 0 for our samples, which is roughly a factor of two lower than for bulk CdSe. We incorporate this reduction to account for the partially organic nature of our samples. We note that although this assumption adds uncertainty to the subsequently extracted parameters, it is hard to imagine a case in which it could be out by more than a factor of two.
34.
X. G.
Peng
,
M. C.
Schlamp
,
A. V.
Kadavanich
, and
A. P.
Alivisatos
,
J. Am. Chem. Soc.
119
,
7019
(
1997
).
35.
B. O.
Dabbousi
,
J.
Rodriguez-Viejo
,
F. V.
Mikulec
,
J. R.
Heine
,
H.
Mattoussi
,
R.
Ober
,
K. F.
Jensen
, and
M. G.
Bawendi
,
J. Phys. Chem. B
101
,
9463
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.