Pulsed illumination of lithium–niobate crystals with green light excites electrons from deep traps into the intrinsic defect (Nb on Li site in the valence state 5+) and creates centers (small polarons). The electrons trapped in this more shallow center increase the light absorption in the red and near infrared. The dark decay of the polaron concentration is observed by monitoring the relaxation of these absorption changes. Iron-doped lithium–niobate crystals with different concentrations of are investigated for various illumination conditions and temperatures. The relaxation shows a stretched-exponential behavior which is in disagreement with the predictions of the standard rate-equation-based model. The observed lifetimes of the polarons range from tens of nanoseconds to some milliseconds. Computer simulations reveal that all results can be explained considering distance-dependent excitation and recombination rates, i.e., the lifetime of an individual polaron depends on the distance to the next available deep electron trap. Based on the new insights, tailoring of lithium–niobate crystals for nonvolatile holographic storage becomes possible.
Skip Nav Destination
Article navigation
1 February 2000
Research Article|
February 01 2000
Lifetime of small polarons in iron-doped lithium–niobate crystals Available to Purchase
D. Berben;
D. Berben
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
Search for other works by this author on:
K. Buse;
K. Buse
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
Search for other works by this author on:
S. Wevering;
S. Wevering
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
Search for other works by this author on:
P. Herth;
P. Herth
Institut für Kristallographie, Universität zu Köln, D-50674 Köln, Germany
Search for other works by this author on:
M. Imlau;
M. Imlau
Institut für Kristallographie, Universität zu Köln, D-50674 Köln, Germany
Search for other works by this author on:
Th. Woike
Th. Woike
Institut für Kristallographie, Universität zu Köln, D-50674 Köln, Germany
Search for other works by this author on:
D. Berben
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
K. Buse
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
S. Wevering
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
P. Herth
Institut für Kristallographie, Universität zu Köln, D-50674 Köln, Germany
M. Imlau
Institut für Kristallographie, Universität zu Köln, D-50674 Köln, Germany
Th. Woike
Institut für Kristallographie, Universität zu Köln, D-50674 Köln, Germany
J. Appl. Phys. 87, 1034–1041 (2000)
Article history
Received:
June 28 1999
Accepted:
October 19 1999
Citation
D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike; Lifetime of small polarons in iron-doped lithium–niobate crystals. J. Appl. Phys. 1 February 2000; 87 (3): 1034–1041. https://doi.org/10.1063/1.371976
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Re-examination of important defect complexes in silicon: From microelectronics to quantum computing
P. P. Filippatos, A. Chroneos, et al.
Tutorial: Simulating modern magnetic material systems in mumax3
Jonas J. Joos, Pedram Bassirian, et al.
Piezoelectric thin films and their applications in MEMS: A review
Jinpeng Liu, Hua Tan, et al.
Related Content
Modification of stretched-exponentially dependent depopulation dynamics of small polaron in Fe:LiNbO 3 crystals
J. Appl. Phys. (April 2004)
Nonvolatile two-color holographic recording in nondoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers
Appl. Phys. Lett. (June 2003)
Photochromic effect in near-stoichiometric LiNbO 3 and two-color holographic recording
J. Appl. Phys. (October 2000)
Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate
Appl. Phys. Lett. (October 2002)
Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals
J. Appl. Phys. (June 2004)